設(shè)函數(shù)f(x)=
log
1
2
x(x>1)
3x(x≤1)
則f(f(16))的值是( 。
A、9
B、
1
16
C、81
D、
1
81
考點(diǎn):對數(shù)的運(yùn)算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用對數(shù)的運(yùn)算性質(zhì)可得f(16)=log
1
2
16=-4,即可得出f(f(16))=f(-4).
解答: 解:∵f(16)=log
1
2
16=-4,
∴f(f(16))=f(-4)=3-4=
1
81

故選:D.
點(diǎn)評:本題考查了指數(shù)函數(shù)與對數(shù)函數(shù)的運(yùn)算性質(zhì)、分段函數(shù)的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)a,b,則a•b>0是a>0且b>0的( 。l件.
A、充分不必要
B、必要不充分
C、充要
D、既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在同一個(gè)坐標(biāo)系中,函數(shù)y=2xy=log
1
2
x
的圖象最可能是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(-1,4),直線BC的方程為x-y+1=0.
(1)求過點(diǎn)D(0,1)且與BC垂直的直線的方程;
(2)求點(diǎn)A到直線BC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求函數(shù)y=3sinx+4cosx的最大值與最小值.
(2)你能用a,b表示函數(shù)y=asinx+bcosx的最大值和最小值嗎?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
1
4x+2

(1)求f(x)+f(1-x)的值;
(2)求f(
1
10
)+f(
2
10
)+f(
3
10
)+f(
9
10
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正數(shù)數(shù)列{an}是等比數(shù)列且a1005=100,則lga12+lga22+…+lga20092=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面命題中,正確命題的個(gè)數(shù)為( 。
①命題:“若x2-2x-3=0,則x=3”的逆否命題為:“若x≠3,則x2-2x-3≠0”;
②命題:“?x∈R,使x-2>lgx”的否定是“?x∈R,x-2≤lgx”;
③“點(diǎn)M在曲線y2=4x上”是“點(diǎn)M的坐標(biāo)為(1,2)”的必要不充分條件.
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x=m和x=n是函數(shù)f(x)=2lnx+
1
2
x2-(a+1)x的兩個(gè)極點(diǎn)值,其中m<N,a>0
(1)若a=2時(shí),求m,n的值;
(2)求f(m)+f(n)的取值范圍;
(3)若a≥
2e
+
2
e
-1(e是自然對數(shù)的底數(shù)),求證:f(n)-f(m)≤2-e+
1
e

查看答案和解析>>

同步練習(xí)冊答案