15.關(guān)于直線l,m及平面α,β,下列命題中正確的是(  )
A.若l∥α,α∩β=m,則l∥mB.若l∥α,m∥α,則l∥m
C.若l⊥α,m∥α,則l⊥mD.若l∥α,m⊥l,則m⊥α

分析 在A中,l與m平行或異面;在B中,l與m相交、平行或異面;在C中,由線面垂直的性質(zhì)定理得l⊥m;在D中,m與α相交、平行或m?α.

解答 解:由直線l,m及平面α,β,知:
在A中,若l∥α,α∩β=m,則l與m平行或異面,故A錯(cuò)誤;
在B中,若l∥α,m∥α,則l與m相交、平行或異面,故B錯(cuò)誤;
在C中,若l⊥α,m∥α,則由線面垂直的性質(zhì)定理得l⊥m,故C正確;
在D中,若l∥α,m⊥l,則m與α相交、平行或m?α,故D錯(cuò)誤.
故選:C.

點(diǎn)評(píng) 本題考查命題真假的判斷,是中檔題,解題時(shí)要認(rèn)真審題,注意空間中線線、線面、面面的位置關(guān)系的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.l是經(jīng)過雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)焦點(diǎn)F且與實(shí)軸垂直的直線,A,B是雙曲線C的兩個(gè)頂點(diǎn),點(diǎn)在l存在一點(diǎn)P,使∠APB=60°,則雙曲線離心率的最大值為$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點(diǎn)為F1(-1,0),P為橢圓上的頂點(diǎn),且∠PF1O=45°(O為坐標(biāo)原點(diǎn)).
(1)求a,b的值;
(2)已知直線l1:y=kx+m1與橢圓交于A,B兩點(diǎn),直線l2:y=kx+m2(m1≠m2)與橢圓交于C,D兩點(diǎn),且|AB|=|CD|.
①求m1+m2的值;
②求四邊形ABCD的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=6x2+x-1.
(Ⅰ)求f(x)的零點(diǎn);
(Ⅱ)若α為銳角,且sinα是f(x)的零點(diǎn).
(ⅰ)求$\frac{{tan({π+α})•cos({-α})}}{{cos({\frac{π}{2}-α})•sin({π-α})}}$的值;
(ⅱ)求$sin({α+\frac{π}{6}})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知向量$\overrightarrow a=(x,y)$(x,y∈R),$\overrightarrow b=(1,2)$,若x2+y2=1,則$|\overrightarrow a-\overrightarrow b|$的最大值為$\sqrt{5}$+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列四組函數(shù)中,表示相等函數(shù)的一組是( 。
A.f(x)=1,g(x)=x0B.f(x)=|x|,g(t)=$\sqrt{{t}^{2}}$
C.f(x)=$\frac{{x}^{2}-1}{x-1}$,g(x)=x+1D.f(x)=lg(x+1)+lg(x-1),g(x)=lg(x2-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,四邊形ABCD為矩形,DA⊥平面ABE,AE=EB=BC=2,BF⊥平面ACE于點(diǎn)F,且點(diǎn)F在CE上.
(1)求證:AE⊥BE;
(2)求三棱錐C-ADE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.命題“若ab=0,則a=0或b=0”的否定為若ab=0,則a≠0且b≠0”,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知a>0,b>0,且ab=1,則函數(shù)f(x)=ax與函數(shù)g(x)=-logbx的圖象可能是(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案