(本小題滿分13分)

已知橢圓C的對(duì)稱軸為坐標(biāo)軸,且短軸長(zhǎng)為4,離心率為。

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)橢圓C的焦點(diǎn)在y軸上,斜率為1的直線l與C相交于A,B兩點(diǎn),且

,求直線l的方程。

 

【答案】

(Ⅰ)(Ⅱ)

【解析】

試題分析:(Ⅰ)設(shè)橢圓C的長(zhǎng)半軸長(zhǎng)為a(a>0),短半軸長(zhǎng)為b(b>0),

則2b=4,。            2分

解得a=4,b=2。                      3分

因?yàn)闄E圓C的對(duì)稱軸為坐標(biāo)軸,

所以橢圓C的方程為標(biāo)準(zhǔn)方程,且為。     5分

(Ⅱ)設(shè)直線l的方程為,A(x1,y1),B(x2,y2),     6分

由方程組,消去y,

,      7分

由題意,得, 8分

,  9分

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013050119042853705216/SYS201305011904548807316887_DA.files/image009.png">

, 11分

所以,解得m=±2,

驗(yàn)證知△>0成立,

所以直線l的方程為。      13分

考點(diǎn):橢圓方程幾何性質(zhì)及直線與橢圓相交弦長(zhǎng)問題

點(diǎn)評(píng):直線與橢圓相交問題常借助與韋達(dá)定理設(shè)而不求簡(jiǎn)化計(jì)算,本題涉及到的弦長(zhǎng)公式,其中k是直線斜率,是兩交點(diǎn)橫坐標(biāo)

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數(shù).

(1)求函數(shù)的最小正周期和最大值;

(2)在給出的直角坐標(biāo)系中,畫出函數(shù)在區(qū)間上的圖象.

(3)設(shè)0<x<,且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052519321600001521/SYS201205251933396875338731_ST.files/image001.png">的函數(shù)是奇函數(shù).

(1)求的值;(2)判斷函數(shù)的單調(diào)性;

(3)若對(duì)任意的,不等式恒成立,求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題

 

(本小題滿分13分)如圖,正三棱柱的所有棱長(zhǎng)都為2,的中點(diǎn)。

(Ⅰ)求證:∥平面

(Ⅱ)求異面直線所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[來源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)

已知為銳角,且,函數(shù),數(shù)列{}的首項(xiàng).

(1) 求函數(shù)的表達(dá)式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數(shù)列的前項(xiàng)和

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案