已知橢圓的中心在原點,焦點在軸上,一個頂點為,且其右焦點到直線的距離為3.
(Ⅰ)求橢圓方程;
(Ⅱ)設直線過定點,與橢圓交于兩個不同的點,且滿足.
求直線的方程.
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓,為其右焦點,離心率為.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若點,問是否存在直線,使與橢圓交于兩點,且.若存在,求出的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的離心率為,且過點.
(1)求橢圓的方程;
(2)若過點C(-1,0)且斜率為的直線與橢圓相交于不同的兩點,試問在軸上是否存在點,使是與無關(guān)的常數(shù)?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知拋物線C:與橢圓共焦點,
(Ⅰ)求的值和拋物線C的準線方程;
(Ⅱ)若P為拋物線C上位于軸下方的一點,直線是拋物線C在點P處的切線,問是否存在平行于的直線與拋物線C交于不同的兩點A,B,且使?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓(a>b>0)拋物線,從每條曲線上取兩個點,將其坐標記錄于下表中:
4 | 1 | |||
2 | 4 | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知雙曲線C:(a>0,b>0)的左、右焦點分別為、,離心率為3,直線y=2與C的兩個交點間的距離為.
(Ⅰ)求a,b;
(Ⅱ)設過的直線l與C的左、右兩支分別交于A、B兩點,且,證明:、、成等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在正方形中,為坐標原點,點的坐標為,點的坐標為,分別將線段和十等分,分點分別記為和,連接,過作軸的垂線與交于點。
(Ⅰ)求證:點都在同一條拋物線上,并求拋物線的方程;
(Ⅱ)過點作直線與拋物線E交于不同的兩點, 若與的面積之比為4:1,求直線的方程。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com