已知等差數(shù)列的首項(xiàng)為24,公差為,則當(dāng)n=       時(shí),該數(shù)列的前n項(xiàng)
取得最大值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分13分)某企業(yè)的產(chǎn)品以往專(zhuān)銷(xiāo)歐美市場(chǎng),在全球金融風(fēng)暴的影響下,歐美市場(chǎng)的銷(xiāo)量受到嚴(yán)重影響,該企業(yè)在政府的大力扶助下積極開(kāi)拓國(guó)內(nèi)市場(chǎng),并基本形成了市場(chǎng)規(guī)模;自2009年9月以來(lái)的第n個(gè)月(2009年9月為第一個(gè)月)產(chǎn)品的內(nèi)銷(xiāo)量、出口量和銷(xiāo)售總量(銷(xiāo)售總量=內(nèi)銷(xiāo)量與出口量的和)分別為bn、cn和an(單位:萬(wàn)件),依據(jù)銷(xiāo)售統(tǒng)計(jì)數(shù)據(jù)發(fā)現(xiàn)形成如下?tīng)I(yíng)銷(xiāo)趨勢(shì):bn + 1 =" a" an,cn + 1 =" an" + b an2 (其中a、b為常數(shù)),已知a1 = 1萬(wàn)件,a2 = 1.5萬(wàn)件,a3 = 1.875萬(wàn)件.
(1)求a,b的值,并寫(xiě)出an + 1與an滿(mǎn)足的關(guān)系式;
(2)試用你所學(xué)的數(shù)學(xué)知識(shí)論證銷(xiāo)售總量逐月遞增且控制在2萬(wàn)件內(nèi);
(3)試求從2009年9月份以來(lái)的第n個(gè)月的銷(xiāo)售總量an關(guān)于n的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知等差數(shù)列的首項(xiàng)為a,公差為b,等比數(shù)列的首項(xiàng)為b,公比為a,其中a、b都是大于1的正整數(shù),且。
①求a的值;
②對(duì)于任意的,總存在,使得成立,求b;
③令,問(wèn)數(shù)列中是否存在連續(xù)三項(xiàng)成等比數(shù)列,若存在,求出所有成等比數(shù)列的連續(xù)三項(xiàng),若不存在,請(qǐng)說(shuō)明理由。(14分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知數(shù)列{an}對(duì)任意的p,q∈N*滿(mǎn)足ap+q=ap+aq,且a2=-6,那么a10等于(   )
A.-165    B.-33C.-30D.-21

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè){an},{bn}都是等差數(shù)列,它們的前n項(xiàng)和分別是An,Bn,已知=,則=
         。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè),,,則數(shù)列的通項(xiàng)公式
(   )
A.B.C.+1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知{an}為等差數(shù)列,,則等于_  ____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

給出下列命題
(1)“數(shù)列為等比數(shù)列”是“數(shù)列為等比數(shù)列”的充分不必要條件.
(2)“”是在區(qū)間上為增函數(shù)”的充要條件.
(3)是直線(xiàn)與直線(xiàn)互相垂直的充要條件.
(4)設(shè)分別是的內(nèi)角的對(duì)邊,若.則的必要不充分條件.
其中真命題的序號(hào)是                  (寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知為等差數(shù)列,,則等于   (   )
A.-1B.1 C.3D.7

查看答案和解析>>

同步練習(xí)冊(cè)答案