6.一個多面體的三視圖如圖所示,其中主視圖是正方形,左視圖是等腰三角形,則該幾何體的側(cè)面積為( 。
A.64B.98C.108D.158

分析 由三視圖可得,該幾何體為三棱柱它的側(cè)面為三個長方形,求出其長和寬,可得答案.

解答 解:由三視圖可得,該幾何體為三棱柱它的側(cè)面為三個長方形,
它的主視圖和左視圖可得長方形的長和寬分別為;6,5,4,
可算得側(cè)面積S=4×(6+5+5)=64;
故選:A.

點評 本題考查的知識點是由三視圖求面積和體積,根據(jù)已知中的三視圖判斷出幾何體的形狀,是解答的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

16.已知f(x+1)為偶函數(shù),且f(x)在(1,+∞)上遞減,a=f(2),b=f(log32),c=f($\frac{1}{2}$),則( 。
A.b<c<aB.c<b<aC.a<c<bD.a<b<c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.將3封信投入6個信箱內(nèi),不同的投法有216種.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.命題“存在x∈(0,+∞),ln x=x-1”的否定是( 。
A.任意x∈(0,+∞),ln x≠x-1B.任意x∉(0,+∞),ln x=x-1
C.存在x∈(0,+∞),ln x≠x-1D.存在x∉(0,+∞),ln x=x-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.直線y=4x+8與兩坐標軸所圍成的三角形的面積為8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.某次考試期間,甲獨立解出某題的概率為$\frac{1}{3}$,乙和丙二人獨立解出某題的概率分別為$\frac{1}{4}$、$\frac{1}{5}$,假定他們?nèi)说慕獯疬^程相互不受影響,考試期間至少有1人解出該題的概率為( 。
A.$\frac{1}{60}$B.$\frac{1}{12}$C.$\frac{3}{5}$D.$\frac{59}{60}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.端午節(jié)吃粽子是我國的傳統(tǒng)習俗,設一盤中裝有10個粽子,其中豆沙粽子3個,肉粽子2個,白粽子5個,這三種粽子的外觀完全相同,從中任意選取3個.
(1)求三種粽子各取到1個的概率;
(2)設ξ表示取到的豆沙粽子個數(shù),求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.等差數(shù)列{an}中,a7=12,則a3+a11=( 。
A.12B.24C.26D.168

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知橢圓$\frac{x^2}{tanα}$+$\frac{y^2}{{{{tan}^2}α+1}}$=1,其中α∈(0,$\frac{π}{2}$),則橢圓形狀最圓時的方程為( 。
A.${x^2}+\frac{y^2}{6}=1$B.${x^2}+\frac{y^2}{3}=1$C.${x^2}+\frac{y^2}{4}=1$D.${x^2}+\frac{y^2}{2}=1$

查看答案和解析>>

同步練習冊答案