設(shè)n為正整數(shù),f(n)=1++…+,計(jì)算得f(2)=,f(4)>2,f(8)>,f(16)>3,觀察上述結(jié)果,可推測(cè)一般的結(jié)論為_(kāi)______________________________.

f()≥

解析試題分析:由題意得:,,,所以f()≥。
考點(diǎn):歸納推理。
點(diǎn)評(píng):歸納推理,關(guān)鍵在于觀察事實(shí),尋求規(guī)律,然后得到結(jié)論。對(duì)此類題目,只要用心思考,都能做得很好。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

觀察下列算式:
13 =1,
23 =3+5,
33 = 7+9+11
43 ="13" +15 +17 +19 ,
… …
若某數(shù)n3按上述規(guī)律展開(kāi)后,發(fā)現(xiàn)等式右邊含有“2013”這個(gè)數(shù),則n=       

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

用反證法證明命題“若,則”時(shí),假設(shè)命題的結(jié)論不成立的正確敘述是“      ”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

中,兩直角邊分別為,設(shè)為斜邊上的高,則,由此類比:三棱錐中的三條側(cè)棱、、兩兩垂直,且長(zhǎng)度分別為、、,設(shè)棱錐底面上的高為,則            

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知,觀察下列不等式:①,②,…,則第個(gè)不等式為          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

我們把平面內(nèi)與直線垂直的非零向量稱為直線的法向量,在平面直角坐標(biāo)系中,利用求動(dòng)點(diǎn)軌跡方程的方法,可以求出過(guò)點(diǎn)A(-3,4),且法向量為=(1,-2)的直線(點(diǎn)法式)方程為:1×(x+3)+(-2)×(y-4)=0,化簡(jiǎn)得x-2y+11=0.類比以上方法,在空間直角坐標(biāo)系o-xyz中,經(jīng)過(guò)點(diǎn)A(1,2,3)且法向量為=(-1,-2,1)的平面的方程為_(kāi)___________          
(化簡(jiǎn)后用關(guān)于x,y,z的一般式方程表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

平面直角坐標(biāo)系中,圓心在原點(diǎn),半徑為1的園的方程是.根據(jù)類比推理:空間直角坐標(biāo)系中,球心在原點(diǎn),半徑為1的球的方程是              

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

用反證法證明命題:“三角形的內(nèi)角中至少有一個(gè)不大于60度”時(shí),反設(shè)是               .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

觀察下列等式:
12=1,
12—22=—3,
12—22+32=6,
12—22+32—42=-10,
…………………
由以上等式推測(cè)到一個(gè)一般的結(jié)論:對(duì)于,12—22+32—42+…+(—1)n+1n2=    

查看答案和解析>>

同步練習(xí)冊(cè)答案