【題目】已知函數(shù)的圖像兩相鄰對稱軸之間的距離是,若將的圖像先向右平移個單位,再向上平移個單位,所得函數(shù)為奇函數(shù).
(1)求的解析式;
(2)求的對稱軸及單調區(qū)間;
(3)若對任意,恒成立,求實數(shù)的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】已知在一次射擊預選賽中,甲、乙兩人各射擊次,兩人成績的條形統(tǒng)計圖如圖所示,則下列四個選項中判斷不正確的是( )
A. 甲的成績的平均數(shù)小于乙的成績的平均數(shù)
B. 甲的成績的中位數(shù)小于乙的成績的中位數(shù)
C. 甲的成績的方差大于乙的成績的方差
D. 甲的成績的極差小于乙的成績的極差
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)為了解下屬某部門對本企業(yè)職工的服務情況,隨機訪問50名職工,根據(jù)這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為
(1)求頻率分布直方圖中的值;
(2)估計該企業(yè)的職工對該部門評分不低于80的概率;
(3)從評分在的受訪職工中,隨機抽取2人,求此2人評分都在的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知過原點O的直線與函數(shù)的圖象交于A,B兩點,分別過A,B作y軸的平行線與函數(shù)圖象交于C,D兩點,若軸,則四邊形ABCD的面積為_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校高二年級一個學習興趣小組進行社會實踐活動,決定對某“著名品牌”系列進行市場銷售量調研,通過對該品牌的系列一個階段的調研得知,發(fā)現(xiàn)系列每日的銷售量(單位:千克)與銷售價格(元/千克)近似滿足關系式,其中,為常數(shù).已知銷售價格為6元/千克時,每日可售出系列15千克.
(1)求函數(shù)的解析式;
(2)若系列的成本為4元/千克,試確定銷售價格的值,使該商場每日銷售系列所獲得的利潤最大.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在四棱臺ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,四邊形ABCD為菱形,∠BAD=120°,AB=AA1=2A1B1=2. (Ⅰ)若M為CD中點,求證:AM⊥平面AA1B1B;
(Ⅱ)求直線DD1與平面A1BD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下表中提供了某廠節(jié)能降耗技術改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應的生產(chǎn)能耗(噸標準煤)的四組對應數(shù)據(jù).
6 | 8 | 10 | 12 | |
2.5 | 3 | 4 | 4.5 |
(1)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關于的線性回歸方程;
(2)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為45噸標準煤,試根據(jù)(1)中的線性回歸方程,預測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標準煤?
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x﹣aex﹣e2x(a∈R,e是自然對數(shù)的底數(shù)). (Ⅰ)若f(x)≤0對任意x∈R恒成立,求實數(shù)a的取值范圍;
(Ⅱ)若方程x﹣aex=0有兩個不同的實數(shù)解x1 , x2 , 求證:x1+x2>2.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x+a|+|2x+1|,a∈R.
(1)當a=1時,求不等式f(x)≤1的解集;
(2)設關于x的不等式f(x)≤-2x+1的解集為P,且 P,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com