【題目】正五棱柱中,不同在任何側(cè)面且不同在任何底面的兩頂點(diǎn)的連線稱為它的對(duì)角線,那么一個(gè)正五棱柱對(duì)角線的條數(shù)共有(
A.20
B.15
C.12
D.10

【答案】D
【解析】由題意正五棱柱對(duì)角線一定為上底面的一個(gè)頂點(diǎn)和下底面的一個(gè)頂點(diǎn)的連線,因?yàn)椴煌谌魏蝹?cè)面內(nèi), 故從一個(gè)頂點(diǎn)出發(fā)的對(duì)角線有2條.正五棱柱對(duì)角線的條數(shù)共有2×5=10條.
故選D
抓住上底面的一個(gè)頂點(diǎn),看從此頂點(diǎn)出發(fā)的對(duì)角線有多少條即可解決.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】命題“x∈R,x2+2x+2>0”的否定為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|(x+1)(x﹣2)≥0},B={x|log3(2﹣x)≤1},則A∩(RB)=(
A.
B.{x|x≤﹣1,x>2}
C.{x|x<﹣1}
D.{x|x<﹣1,x≥2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù)f(x)=x3﹣3x2 , 給出下列四個(gè)命題: ①f(x)是增函數(shù),無(wú)極值;
②f(x)是減函數(shù),有極值;
③f(x)在區(qū)間(﹣∞,0]及[2,+∞)上是增函數(shù);
④f(x)有極大值為0,極小值﹣4;
其中正確命題的個(gè)數(shù)為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列等式:13+23=32 , 13+23+33=62 , 13+23+33+43=102 , …,根據(jù)上述規(guī)律,第五個(gè)等式為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)下列對(duì)于幾何體結(jié)構(gòu)特征的描述,說(shuō)出幾何體的名稱.
(1)由八個(gè)面圍成,其中兩個(gè)面是互相平行且全等的正六邊形,其他各面都是矩形;
(2)由五個(gè)面圍成,其中一個(gè)面是正方形,其它各面都是有一個(gè)公共頂點(diǎn)的全等三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題p , q,“非p”為假 命題是“pq” 為真命題的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若sin2α<0且tanαcosα>0,則角α是(
A.第一象限角
B.第二象限角
C.第三象限角
D.第四象限角

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y=1﹣2x的值域?yàn)椋?/span>
A.[1,+∞)
B.(1,+∞)
C.(﹣∞,1]
D.(﹣∞,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案