知橢圓
的兩焦點
、
,離心率為
,直線
:
與橢圓
交于
兩點,點
在
軸上的射影為點
.
(1)求橢圓
的標準方程;
(2)求直線
的方程,使
的面積最大,并求出這個最大值.
試題分析:(1)利用橢圓的基本性質求解
(2)利用弦長公式及基本不等式求解
試題解析:(1)設橢圓方程為
,則
,
,
所以,所求橢圓方程為:
.
(2)由
得:
,
當且僅當
即
時取等號,
此時,直線
的方程為:
,
的面積的最大值為
.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
在平面直角坐標系中,已知點
和
,圓
是以
為圓心,半徑為
的圓,點
是圓
上任意一點,線段
的垂直平分線
和半徑
所在的直線交于點
.
(1)當點
在圓上運動時,求點
的軌跡方程
;
(2)已知
,
是曲線
上的兩點,若曲線
上存在點
,滿足
(
為坐標原點),求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的焦距為
,過右焦點和短軸一個端點的直線的斜率為
,
為坐標原點.
(1)求橢圓
的方程.
(2)設斜率為
的直線
與
相交于
、
兩點,記
面積的最大值為
,證明:
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
給定橢圓
:
,稱圓心在原點
,半徑為
的圓是橢圓
的“準圓”.若橢圓
的一個焦點為
,其短軸上的一個端點到
的距離為
.
(1)求橢圓
的方程和其“準圓”方程;
(2)點
是橢圓
的“準圓”上的動點,過點
作橢圓的切線
交“準圓”于點
.
(。┊旤c
為“準圓”與
軸正半軸的交點時,求直線
的方程,
并證明
;
(ⅱ)求證:線段
的長為定值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的兩焦點在
軸上, 且兩焦點與短軸的一個頂點的連線構成斜邊長為2的等腰直角三角形
(1)求橢圓的方程;
(2)過點
的動直線
交橢圓C于A、B兩點,試問:在坐標平面上是否存在一個定點Q,使得以AB為直徑的圓恒過點Q?若存在求出點Q的坐標;若不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知橢圓C:
的左焦點為F,C與過原點的直線相交于A,B兩點,連接AF,BF,若
,則C的離心率e=
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
過原點O作兩條相互垂直的直線分別與橢圓P:
交于A、C與B、D, 則四邊形ABCD面積最小值為______________________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
如圖,
,
是雙曲線
:
與橢圓
的公共焦點,點
是
,
在第一象限的公共點.若|
F1F2|=|
F1A|,則
的離心率是( ).
查看答案和解析>>