9.已知偶函數(shù)f(x)在(-∞,0)上單調(diào)遞增,若f(-1)=0,則不等式xf(x)>0的解集是( 。
A.(-∞,-1)∪(0,1)B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(0,1)D.(-1,0)∪(1,+∞)

分析 先確定函數(shù)在(0,+∞﹚上是減函數(shù),再將不等式等價變形,利用函數(shù)的單調(diào)性,即可求解不等式.

解答 解:∵函數(shù)f(x)是定義在R上的偶函數(shù),且在(-∞,0)上單調(diào)遞增,
∴函數(shù)在(0,+∞﹚上是減函數(shù),
∵f(-1)=0,∴f(1)=0
不等式xf(x)>0等價于$\left\{\begin{array}{l}{x>0}\\{f(x)>f(1)}\end{array}\right.$或$\left\{\begin{array}{l}{x<0}\\{f(x)<f(-1)}\end{array}\right.$
∴x<-1或0<x<1
故不等式xf(x)>0的解集為(-∞,1)∪(0,1),
故選A.

點評 本題考查函數(shù)單調(diào)性與奇偶性的結(jié)合,考查解不等式,考查學生的計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

10.若|$\overrightarrow{a}$|=3,|$\overrightarrow$|=1且($\sqrt{3}$$\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow$=-2,則 cos<$\overrightarrow{a}$,$\overrightarrow$>=( 。
A.-$\frac{\sqrt{6}}{3}$B.-$\frac{1}{3}$C.-$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.函數(shù)y=$\frac{lg(5-x)}{x-2}$的定義域為{x|x<5且x≠2}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(6-a)x-4a,x<1}\\{lo{g}_{a}x,x≥1}\end{array}\right.$是R上的增函數(shù),則實數(shù)a的范圍是[$\frac{6}{5}$,6).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.函數(shù)f(x)=3sinx+4cosx的最大值為( 。
A.25B.7C.5D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.設(shè)F1,F(xiàn)為橢圓C1:$\frac{{x}^{2}}{{{a}_{1}}^{2}}$+$\frac{{y}^{2}}{{_{1}}^{2}}$=1,(a1>b1>0)與雙曲線C2的公共左、右焦點,它們在第一象限內(nèi)交于點M,△MF1F2是以線段MF1為底邊的等腰三角形,且|MF1|=2,若橢圓C1的離心率e∈[$\frac{3}{8}$,$\frac{4}{9}$],則雙曲線C2的離心率的取值范圍是( 。
A.[$\frac{5}{4}$,$\frac{5}{3}$]B.[$\frac{3}{2}$,++∞)C.(1,4]D.[$\frac{3}{2}$,4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.如果p⇒q,且q⇒p,則p是q的充要條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.在函數(shù)y=$\frac{1}{x^2},y=-{x^2},y={x^2}$+x中,冪函數(shù)的個數(shù)為    ( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}3-|x|(x≤3)\\{x^2}-8x+15(x>3)\end{array}$若f(f(m))≥0,則實數(shù)m的取值范圍是(  )
A.[-6,6]B.[-3,3]∪[5,+∞)C.$[{-6,4+\sqrt{6}}]$D.$[{-6,6}]∪[{4+\sqrt{6},+∞})$

查看答案和解析>>

同步練習冊答案