【題目】一條寬為的兩平行河岸有村莊和供電站,村莊的直線距離都是, 與河岸垂直,垂足為現(xiàn)要修建電纜,從供電站向村莊供電.修建地下電纜、水下電纜的費用分別是萬元、萬元.

(1) 如圖①,已知村莊原來鋪設(shè)有電纜,現(xiàn)先從處修建最短水下電纜到達對岸后后,再修建地下電纜接入原電纜供電,試求該方案總施工費用的最小值;

(2) 如圖②,點在線段上,且鋪設(shè)電纜的線路為.若,試用表示出總施工費用(萬元)的解析式,并求的最小值.

【答案】(1);(2).

【解析】試題分析:(1)由已知可得為等邊三角形, 水下電纜的最短線路為,,可知地下電纜的最短線路為,由此能求出該方案的總費用;(2)因為所以.可得,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,從而能求出施工總費用的最小值.

試題解析:(1)由已知可得為等邊三角形.

因為,所以水下電纜的最短線路為.

,可知地下電纜的最短線路為.

故該方案的總費用為 (萬元)

2)因為

所以.

,

,

因為,所以

,即時,

,即時,

所以,從而

此時,

因此施工總費用的最小值為()萬元,其中.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=log (x2﹣2x)的單調(diào)遞增區(qū)間是(
A.(1,+∞)
B.(2,+∞)
C.(﹣∞,0)
D.(﹣∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過點M( ,0)的直線l與拋物線y2=2px(p>0)交于A,B兩點,且 =﹣3,其中O為坐標原點.
(1)求p的值;
(2)當|AM|+4|BM|最小時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),.

(1)當(為自然對數(shù)的底數(shù))時,求曲線在點處的切線方程;

(2)討論函數(shù)的零點的個數(shù);

(3)若對任意,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過雙曲線x2 =1的右支上一點P,分別向圓C1:(x+4)2+y2=4和圓C2:(x﹣4)2+y2=1作切線,切點分別為M,N,則|PM|2﹣|PN|2的最小值為(
A.10
B.13
C.16
D.19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱錐S﹣ABC中,∠SBA=∠SCA=90°,△ABC是斜邊AB=a的等腰直角三角形,則以下結(jié)論中: ①異面直線SB與AC所成的角為90°;
②直線SB⊥平面ABC;
③面SBC⊥面SAC;
④點C到平面SAB的距離是

其中正確結(jié)論的序號是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}中,a5=9,a7=13,等比數(shù)列{bn}的通項公式bn=2n1 , n∈N* . (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{an+bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的圓臺中,AC是下底面圓O的直徑,EF是上底面圓O′的直徑,F(xiàn)B是圓臺的一條母線.
(I)已知G,H分別為EC,F(xiàn)B的中點,求證:GH∥平面ABC;
(Ⅱ)已知EF=FB= AC=2 ,AB=BC,求二面角F﹣BC﹣A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=3x2﹣kx﹣8,x∈[1,5].
(1)當k=12時,求f(x)的值域;
(2)若函數(shù)f(x)具有單調(diào)性,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案