【題目】格紙中每個正方形的邊長為1,粗線部分是一個幾何體的三視圖,則該幾何體最長棱的棱長是

A. 3 B. 6 C. D. 5

【答案】D

【解析】畫出立體圖(如圖).由圖知,該幾何體最長棱的棱長是5.

點(diǎn)睛:三視圖問題的常見類型及解題策略

(1)由幾何體的直觀圖求三視圖.注意正視圖、側(cè)視圖和俯視圖的觀察方向,注意看到的部分用實(shí)線表示,不能看到的部分用虛線表示.

(2)由幾何體的部分視圖畫出剩余的部分視圖.先根據(jù)已知的一部分三視圖,還原、推測直觀圖的可能形式,然后再找其剩下部分三視圖的可能形式.當(dāng)然作為選擇題,也可將選項(xiàng)逐項(xiàng)代入,再看看給出的部分三視圖是否符合.

(3)由幾何體的三視圖還原幾何體的形狀.要熟悉柱、錐、臺、球的三視圖,明確三視圖的形成原理,結(jié)合空間想象將三視圖還原為實(shí)物圖.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校100名學(xué)生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[5060),[60,70),[7080),[8090),[90,100]

1)求圖中a的值;

2)根據(jù)頻率分布直方圖,估計這100名學(xué)生語文成績的平均分;

3)若這100名學(xué)生語文成績某些分?jǐn)?shù)段的人數(shù)(x)與數(shù)學(xué)成績相應(yīng)分?jǐn)?shù)段的人數(shù)(y)之比如表所示,求數(shù)學(xué)成績在[5090)之外的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“楊輝三角”又稱“賈憲三角”,是因?yàn)橘Z憲約在公元1050年首先使用“賈憲三角”進(jìn)行高次開方運(yùn)算,而楊輝在公元1261年所著的《詳解九章算法》一書中,記錄了賈憲三角形數(shù)表,并稱之為“開方作法本源”圖.下列數(shù)表的構(gòu)造思路就源于“楊輝三角”.該表由若干行數(shù)字組成,從第二行起,每一行中的數(shù)字均等于其“肩上”兩數(shù)之和,表中最后一行僅有一個數(shù),則這個數(shù)是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年5月13日第30屆大連國際馬拉松賽舉行,某單位的10名跑友報名參加了半程馬拉松、10公里健身跑、迷你馬拉松3個項(xiàng)目(每人只報一項(xiàng)),報名情況如下:

項(xiàng)目

半程馬拉松

10公里健身跑

迷你馬拉松

人數(shù)

2

3

5

(其中:半程馬拉松公里,迷你馬拉松公里)

(1)從10人中選出2人,求選出的兩人賽程距離之差大于10公里的概率;

(2)從10人中選出2人,設(shè)為選出的兩人賽程距離之和,求隨機(jī)變量的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題:
·(1)y=|cos(2x+ )|最小正周期為π;
·(2)函數(shù)y=tan 的圖象的對稱中心是(kπ,0),k∈Z;
·(3)f(x)=tanx﹣sinx在(﹣ , )上有3個零點(diǎn);
·(4)若 , ,則
其中錯誤的是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

)討論函數(shù)的單調(diào)性;

)若函數(shù)上有最小值,且最小值為,滿足,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

(2)令,其圖象上任意一點(diǎn)處切線的斜率恒成立,求實(shí)數(shù)的取值范圍.

(3)當(dāng)時,方程在區(qū)間內(nèi)有唯一實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,底面△ABC是等邊三角形,側(cè)面為正方形,且平面ABC, 為線段上的一點(diǎn).

(Ⅰ) 若∥平面A1CD,確定D的位置,并說明理由;

(Ⅱ) 在(Ⅰ)的條件下,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3+x2+mx在x=1處有極小值,

g(x)=f(x)﹣x3x2+x﹣alnx.

(1)求函數(shù)f(x)的單調(diào)區(qū)間;

(2)是否存在實(shí)數(shù)a,對任意的x1、x2∈(0,+∞),且x1≠x2,有恒成立?若存在,求出a的取值范圍;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案