A. | 既是奇函數(shù)也是偶函數(shù) | B. | 既不是奇函數(shù)也不是偶函數(shù) | ||
C. | 是奇函數(shù)不是偶函數(shù) | D. | 是偶函數(shù)不是奇函數(shù) |
分析 根據(jù)題意,對(duì)于函數(shù)$f(x)=\frac{{\sqrt{9-{x^2}}}}{{|{6-x}|-6}}$,先求出其定義域,分析可得其定義域關(guān)于原點(diǎn)對(duì)稱,進(jìn)而可以將函數(shù)的解析式變形為f(x)=-$\frac{\sqrt{9-{x}^{2}}}{x}$,計(jì)算f(-x)分析可得f(-x)=-f(x),由函數(shù)奇偶性的定義即可得答案.
解答 解:根據(jù)題意,對(duì)于函數(shù)$f(x)=\frac{{\sqrt{9-{x^2}}}}{{|{6-x}|-6}}$,
必有9-x2≥0且|6-x|-6≠0,
解可得-3≤x≤3且x≠0,
即函數(shù)的定義域?yàn)閧x|-3≤x≤3且x≠0},關(guān)于原點(diǎn)對(duì)稱,
則函數(shù)f(x)=-$\frac{\sqrt{9-{x}^{2}}}{x}$,-3≤x≤3且x≠0,
f(-x)=$\frac{\sqrt{9-{x}^{2}}}{x}$=-f(x),
則函數(shù)為奇函數(shù)不是偶函數(shù);
故選:C.
點(diǎn)評(píng) 本題考查函數(shù)奇偶性的判斷,關(guān)鍵要求出函數(shù)的定義域,進(jìn)而化簡(jiǎn)函數(shù)的解析式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4 個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{x^2}{3}-{y^2}=1(x≥\sqrt{3})$ | B. | $\frac{x^2}{3}-{y^2}=1(x≤-\sqrt{3})$ | C. | ${x^2}-\frac{y^2}{3}=1(x≥1)$ | D. | ${x^2}-\frac{y^2}{3}=1(x≤-1)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若f(x)是奇函數(shù),則f(0)=0 | |
B. | 若α是銳角,則2α是一象限或二象限角 | |
C. | 若$\overrightarrow a∥\overrightarrow b,\overrightarrow b∥\overrightarrow c$,則$\overrightarrow a∥\overrightarrow c$ | |
D. | 集合A={P|P⊆{1,2}}有4個(gè)元素 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com