【題目】解關(guān)于的不等式:

【答案】見(jiàn)解析

【解析】

討論m0、m0m0,解一元二次不等式即可.

解:關(guān)于x的不等式mx2﹣(2m1x20等價(jià)于(x2)(mx+1)>0;

當(dāng)m0時(shí),不等式化為x20,解得解集為(2+∞);

當(dāng)m0時(shí),不等式等價(jià)于(x)(x2)>0,

解得不等式的解集為(﹣∞,﹣)∪(2,+∞);

當(dāng)m0時(shí),不等式等價(jià)于(x)(x2)<0,

m0,則2,解得不等式的解集為(2,);

m,則2,不等式化為(x220,此時(shí)不等式的解集為;

m,則2,解得不等式的解集為(2).

綜上,m0時(shí),不等式的解集為(2,+∞);

m0時(shí),不等式的解集為(﹣∞,﹣)∪(2+∞);

m0時(shí),不等式的解集為(2,);

m時(shí),不等式的解集為;

m時(shí),不等式的解集為(,2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)在區(qū)間上有最大值4,最小值0.

1)求函數(shù)的解析式;

2)設(shè),若時(shí)恒成立,求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知函數(shù),則不等式的解集是_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱錐中, 是邊長(zhǎng)為的等邊三角形, , 分別是的中點(diǎn).

(1)求證: 平面;

(2)求證: 平面;

(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近期,某公交公司與銀行開(kāi)展云閃付乘車(chē)支付活動(dòng),吸引了眾多乘客使用這種支付方式.某線(xiàn)路公交車(chē)準(zhǔn)備用20天時(shí)間開(kāi)展推廣活動(dòng),他們組織有關(guān)工作人員,對(duì)活動(dòng)的前七天使用云閃付支付的人次數(shù)據(jù)做了初步處理,設(shè)第x天使用云閃付支付的人次為y,得到如圖所示的散點(diǎn)圖.

由統(tǒng)計(jì)圖表可知,可用函數(shù)yabx擬合yx的關(guān)系

1)求y關(guān)于x的回歸方程;

2)預(yù)測(cè)推廣期內(nèi)第幾天起使用云閃付支付的人次將超過(guò)10000人次.

附:①參考數(shù)據(jù)

xi2

xiyi

xivi

4

360

2.30

140

14710

71.40

表中vilgyi,lgyi

②參考公式:對(duì)于一組數(shù)據(jù)(u1v1),(u2,v2)…,(un,vn),其回歸直線(xiàn)vα+βu的斜率和截距的最小二乘估計(jì)分別為β,α

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某網(wǎng)店經(jīng)營(yíng)的一種商品進(jìn)行進(jìn)價(jià)是每件10元,根據(jù)一周的銷(xiāo)售數(shù)據(jù)得出周銷(xiāo)售量(件)與單價(jià)(元)之間的關(guān)系如下圖所示,該網(wǎng)店與這種商品有關(guān)的周開(kāi)支均為25元.

(1)根據(jù)周銷(xiāo)售量圖寫(xiě)出(件)與單價(jià)(元)之間的函數(shù)關(guān)系式;

(2)寫(xiě)出利潤(rùn)(元)與單價(jià)(元)之間的函數(shù)關(guān)系式;當(dāng)該商品的銷(xiāo)售價(jià)格為多少元時(shí),周利潤(rùn)最大?并求出最大周利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在梯形中,,,,四邊形是菱形,.

(Ⅰ)求證:

(Ⅱ)求二面角的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為定義在上的奇函數(shù),且當(dāng)時(shí),

(Ⅰ)求函數(shù)的解析式;

(Ⅱ)求函數(shù)在區(qū)間 上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)設(shè),當(dāng)時(shí),對(duì)任意,存在,使,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案