【題目】某中學(xué)有學(xué)生500人,學(xué)校為了解學(xué)生的課外閱讀時間,從中隨機抽取了50名學(xué)生,獲得了他們某一個月課外閱讀時間的數(shù)據(jù)(單位:小時),將數(shù)據(jù)分為5組:[10,12),[12,14),[14,16),[16,18),[18,20],整理得到如圖所示的頻率分布直方圖.
(1)求頻率分布直方圖中的x的值;
(2)試估計該校所有學(xué)生中,課外閱讀時間不小于16小時的學(xué)生人數(shù);
(3)已知課外閱讀時間在[10,12)的樣本學(xué)生中有3名女生,現(xiàn)從閱讀時間在[10,12)的樣本學(xué)生中隨機抽取3人,記X為抽到女生的人數(shù),求X的分布列與數(shù)學(xué)期望E(X).
【答案】(1)0.15;(2)150;(3)見解析
【解析】
(1)利用頻率分布直方圖,通過概率和為1,即可求解;(2)利用分布直方圖求解即可;(3)隨機變量的所有可能取值為0,1,2,3,求出概率得到分布列,然后求解期望.
(1)由,
可得0.15
(2),
即課外閱讀時間不小于16個小時的學(xué)生樣本的頻率為0.30.500×0.30=150,
所以可估計該校所有學(xué)生中,課外閱讀時間不小于16個小時的學(xué)生人數(shù)為150.
(3)課外閱讀時間在[10,12)的學(xué)生樣本的頻率為0.08×2=0.16,50×0.16=8,即閱讀時間在[10,12)的學(xué)生樣本人數(shù)為8,8名學(xué)生為3名女生,5名男生,
隨機變量X的所有可能取值為0,1,2,3,; ;;.
所以X的分布列為:
X | 0 | 1 | 2 | 3 |
P |
故的期望
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為2的正方體中,點分別是棱上的動點,且.
(1)求證:;
(2)當(dāng)三棱錐的體積取得最大值時,求二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為保障食品安全,某地食品藥監(jiān)管部門對轄區(qū)內(nèi)甲、乙兩家食品企業(yè)進行檢查,分別從這兩家企業(yè)生產(chǎn)的某種同類產(chǎn)品中隨機抽取了100件作為樣本,并以樣本的一項關(guān)鍵質(zhì)量指標值為檢測依據(jù).已知該質(zhì)量指標值對應(yīng)的產(chǎn)品等級如下:
質(zhì)量指標值 | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) | [40,45] |
等級 | 次品 | 二等品 | 一等品 | 二等品 | 三等品 | 次品 |
根據(jù)質(zhì)量指標值的分組,統(tǒng)計得到了甲企業(yè)的樣本頻率分布直方圖和乙企業(yè)的樣本頻數(shù)分布表(如下面表,其中a>0).
質(zhì)量指標值 | 頻數(shù) |
[15,20) | 2 |
[20,25) | 18 |
[25,30) | 48 |
[30,35) | 14 |
[35,40) | 16 |
[40,45] | 2 |
合計 | 100 |
(Ⅰ)現(xiàn)從甲企業(yè)生產(chǎn)的產(chǎn)品中任取一件,試估計該件產(chǎn)品為次品的概率;
(Ⅱ)為守法經(jīng)營、提高利潤,乙企業(yè)開展次品生產(chǎn)原因調(diào)查活動.已知乙企業(yè)從樣本里的次品中隨機抽取了兩件進行分析,求這兩件次品中恰有一件指標值屬于[40,45]的產(chǎn)品的概率;
(Ⅲ)根據(jù)圖表數(shù)據(jù),請自定標準,對甲、乙兩企業(yè)食品質(zhì)量的優(yōu)劣情況進行比較.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在傳染病學(xué)中,通常把從致病刺激物侵入機體或者對機體發(fā)生作用起,到機體出現(xiàn)反應(yīng)或開始呈現(xiàn)該疾病對應(yīng)的相關(guān)癥狀時止的這一階段稱為潛伏期.一研究團隊統(tǒng)計了某地區(qū)100名患者的相關(guān)信息,得到如下表格:
潛伏期(單位:天) | |||||||
人數(shù) | 85 | 205 | 310 | 250 | 130 | 15 | 5 |
(1)求這1000名患者的潛伏期的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)該傳染病的潛伏期受諸多因素的影響,為研究潛伏期與患者年齡的關(guān)系,以潛伏期是否超過6天為標準進行分層抽樣,從上述1000名患者中抽取200人,得到如下列聯(lián)表.請將列聯(lián)表補充完整,并根據(jù)列聯(lián)表判斷是否有95%的把握認為潛伏期與患者年齡有關(guān);
潛伏期天 | 潛伏期天 | 總計 | |
50歲以上(含50歲) | 100 | ||
50歲以下 | 55 | ||
總計 | 200 |
附:
0.05 | 0.025 | 0.010 | |
3.841 | 5.024 | 6.635 |
,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線C:(a>0,b>0)的漸近線方程為y=±x,右頂點為(1,0).
(1)求雙曲線C的方程;
(2)已知直線y=x+m與雙曲線C交于不同的兩點A,B,且線段AB的中點為,當(dāng)x0≠0時,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求曲線在點處的切線方程;
(2)當(dāng)時,若曲線在直線的上方,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)函數(shù)在處的切線與直線垂直,求實數(shù)a的值;
(2)若函數(shù)在定義域上有兩個極值點,,且.
①求實數(shù)a的取值范圍;
②求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“工資條里顯紅利,個稅新政人民心”,隨著2019年新年鐘聲的敲響,我國自1980年以來,力度最大的一次個人所得稅(簡稱個稅)改革迎來了全面實施的階段,某從業(yè)者為了解自己在個稅新政下能享受多少稅收紅利,繪制了他在26歲~35歲(2009年~2018年)之間各月的月平均收入(單位:千元)的散點圖:
(1)由散點圖知,可用回歸模型擬合與的關(guān)系,試根據(jù)有關(guān)數(shù)據(jù)建立關(guān)于的回歸方程;
(2)如果該從業(yè)者在個稅新政下的專項附加扣除為3000元/月,試利用(1)的結(jié)果,將月平均收入為月收入,根據(jù)新舊個稅政策,估計他36歲時每個月少繳交的個人所得稅.
附注:
參考數(shù)據(jù),,,,,,,其中;取,
參考公式:回歸方程中斜率和截距的最小二乘估計分別為,
新舊個稅政策下每月應(yīng)納稅所得額(含稅)計算方法及稅率表如下:
舊個稅稅率表(個稅起征點3500元) | 新個稅稅率表(個稅起征點5000元) | |||
稅繳級數(shù) | 每月應(yīng)納稅所得額(含稅) =收入-個稅起征點 | 稅率 (%) | 每月應(yīng)納稅所得額(含稅) =收入一個稅起征點-專項附加扣除 | 稅率 (%) |
1 | 不超過1500元的部分 | 3 | 不超過3000元的部分 | 3 |
2 | 超過1500元至4500元的部分 | 10 | 超過3000元至12000元的部分 | 10 |
3 | 超過4500元至9000元的部分 | 20 | 超過12000元至25000元的部分 | 20 |
4 | 超過9000元至35000元的部分 | 25 | 超過25000元至35000元的部分 | 25 |
5 | 超過35000元155000元的部分 | 30 | 超過35000元至55000元的部分 | 30 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com