【題目】已知t= (u>1),且關(guān)于t的不等式t2﹣8t+m+18<0有解,則實數(shù)m的取值范圍是(
A.(﹣∞,﹣3)
B.(﹣3,+∞)
C.(3,+∞)
D.(﹣∞,3)

【答案】A
【解析】解:∵u>1,∴u﹣1>0.
∴t= = =﹣[(u﹣1)+ ]+5≤ +5=3,當且僅當u=2時取等號.
∴t∈(﹣∞,3].
∵不等式t2﹣8t+m+18<0,化為m<﹣t2+8t﹣18,
∴關(guān)于t的不等式t2﹣8t+m+18<0有解m<(﹣t2+8t﹣18)max
令f(t)=﹣t2+8t﹣18=﹣(t﹣4)2﹣2≤f(3)=﹣3.
因此m<﹣3.
故選:A.
【考點精析】解答此題的關(guān)鍵在于理解基本不等式的相關(guān)知識,掌握基本不等式:,(當且僅當時取到等號);變形公式:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品均需用A,B兩種原料,已知每種產(chǎn)品各生產(chǎn)1噸所需原料及每天原料的可用限額如下表所示,如果生產(chǎn)1噸甲產(chǎn)品可獲利潤3萬元,生產(chǎn)1噸乙產(chǎn)品可獲利4萬元,則該企業(yè)每天可獲得最大利潤為萬元.

原料限額

A(噸)

3

2

12

B(噸)

1

2

8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,圓C的方程為(x﹣2)2+y2=1,點P在直線l:x+y+1=0上,若過點P存在直線m與圓C交于A,B兩點,且點A為PB中點,則點P的恒坐標的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】解關(guān)于x的不等式ax2﹣(2a+2)x+4>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}中,a1=3,n(an+1﹣an)=an+1,n∈N*若對于任意的a∈[﹣1,1],n∈N* , 不等式 ﹣2at+1恒成立,則實數(shù)t的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an},{bn}分別滿足a1=1,|an+1﹣an|=2,且 |=2,其中n∈N* , 設(shè)數(shù)列{an},{bn}的前n項和分別為Sn , Tn
(1)若數(shù)列{an},{bn}都是遞增數(shù)列,求數(shù)列{an},{bn}的通項公式;
(2)若數(shù)列{cn}滿足:存在唯一的正整數(shù)k(k≥2),使得ck<ck﹣1 , 則稱數(shù)列{cn}為“k墜點數(shù)列”. ①若數(shù)列{an}為“5墜點數(shù)列”,求Sn;
②若數(shù)列{an}為“p墜點數(shù)列”,數(shù)列{bn}為“q墜點數(shù)列”,是否存在正整數(shù)m使得Sm+1=Tm?若存在,求出m的最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}中,a1=3,a2=5,其前n項和為Sn滿足Sn+Sn2=2Sn1+2n1(n≥3,n∈N*)
(1)試求數(shù)列{an}的通項公式
(2)令bn= ,Tn是數(shù)列{bn}的前n項和.證明:對任意給定的m∈(0, ),均存在n0∈N*,使得當n≥n0時,Tn>m恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C1:(x+2)2+(y﹣1)2=4與圓C2:(x﹣3)2+(y﹣4)2=4,過點P(﹣1,5)作兩條互相垂直的直線l1:y=k(x+1)+5,l2:y=﹣ (x+1)+5.
(1)若k=2時,設(shè)l1與圓C1交于A、B兩點,求經(jīng)過A、B兩點面積最小的圓的方程.
(2)若l1與圓C1相交,求證:l2與圓C2相交,且l1被圓C1截得的弦長與l2被圓C2截得的弦長相等.
(3)是否存在點Q,過Q的無數(shù)多對斜率之積為1的直線l3 , l4 , l3被圓C1截得的弦長與l4被圓C2截得的弦長相等.若存在求Q的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列結(jié)論:
①在△ABC中,sinA>sinBa>b;
②常數(shù)數(shù)列既是等差數(shù)列又是等比數(shù)列;
③數(shù)列{an}的通項公式為 ,若{an}為遞增數(shù)列,則k∈(﹣∞,2];
④△ABC的內(nèi)角A,B,C滿足sinA:sinB:sinC=3:5:7,則△ABC為銳角三角形.其中正確結(jié)論的個數(shù)為(
A.0
B.1
C.2
D.3

查看答案和解析>>

同步練習冊答案