命題“每一個四邊形的四個頂點共圓”的否定是( 。
A、存在一個四邊形,它的四個頂點不共圓
B、存在一個四邊形,它的四個頂點共圓
C、所有四邊形的四個頂點共圓
D、所有四邊形的四個頂點都不共圓
考點:命題的否定
專題:簡易邏輯
分析:根據(jù)全稱命題的否定是特稱命題,寫出該命題的否定命題即可.
解答: 解:根據(jù)全稱命題的否定是特稱命題,得;
命題“每一個四邊形的四個頂點共圓”的否定是
“存在一個四邊形的四個頂點不共圓”.
故選:A.
點評:本題考查了全稱命題與特稱命題的應(yīng)用問題,是基礎(chǔ)題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若集合M={x|2-x<0},N={x|x-3≤0},則M∩N為( 。
A、(-∞,-1)∪(2,3]
B、(-∞,3]
C、(2,3]
D、(1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:當(dāng)a=2時,函數(shù)f(x)=x2-alnx在區(qū)間(1,2]上單調(diào)遞增,g(x)=x-a
x
在區(qū)間(0,1)內(nèi)單調(diào)遞減.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是2012年舉行的全國少數(shù)民族運動會上,七位評委為某民族舞蹈打出的分的莖葉統(tǒng)計圖,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的平均數(shù)和中位數(shù)分別為( 。
A、85,84
B、85,84.5
C、85,85
D、85,85.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線f(x)=x+t與曲線y=
1
2x2
相切,則實數(shù)t
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sinωx-2sin2
ωx
2
(ω>0)的最小正周期為3π.當(dāng)x∈[
π
2
,
4
]時,求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

學(xué)校欲在甲、乙兩店采購某款投影儀,該款投影儀原價為每臺2000元,甲店用如下方法促銷:買一臺價格為1950元,買兩臺價格為1900元,每多買臺,每多買一臺,則所買各臺單價均再減50元,但最低不能低于1200元;乙店一律按原售價的80%促銷.學(xué)校需要購買x臺投影儀,若在甲店購買費用記為f(x)元,若在乙店購買費用記為g(x)元.
(1)分別求出f(x)和g(x)的解析式;
(2)當(dāng)購買x臺時,在哪家店買更省錢?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
2
sinx+
1
2
cosx,則f(
π
12
)=( 。
A、
2
2
B、
3
2
C、1
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司生產(chǎn)的某批產(chǎn)品的銷售量P萬件(生產(chǎn)量與銷售量相等)與促銷費用x萬元滿足P=
x+2
4
(其中0≤x≤a,a為正常數(shù)).已知生產(chǎn)該產(chǎn)品還需投入成本6(P+
1
P
)萬元(不含促銷費用),產(chǎn)品的銷售價格定為(4+
20
p
)元/件.
(1)將該產(chǎn)品的利潤y萬元表示為促銷費用x萬元的函數(shù);
(2)促銷費用投入多少萬元時,該公司的利潤最大?

查看答案和解析>>

同步練習(xí)冊答案