精英家教網 > 高中數學 > 題目詳情
給出下列命題:①函數y=x0與y=1表示同一個函數;②函數y=x3x∈(-1,1]是奇函數;③若偶函數y=f(x)且在(-∞,0)上是增函數,則函數y=f(x)在(0,+∞)上是減函數;其中正確命題的個數有( 。
分析:對于①考查兩個函數的定義域即可;選項②③中主要涉及奇偶性和對稱性,奇偶性用定義判斷,看f(-x)和f(x)的關系,注意奇偶函數的定義域的對稱性,若定義域不關于原點對稱,一定是非奇非偶函數.
解答:解:對于①,y=1定義域為R,y=x0的定義域為x≠0,故不是同一個函數,故A錯;
對于②定義域(-1,1]不關于原點對稱,一定是非奇非偶函數,故假命題;
對于③若偶函數y=f(x),圖象關于y軸對稱,且在(-∞,0)上是增函數,則函數y=f(x)在(0,+∞)上是減函數,結論正確;
其中正確命題的個數有1
故選B.
點評:本題以命題真假為載體,考查函數的奇偶性和對稱性,屬基本題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

給出下列命題:
①函數f(x)=4cos(2x+
π
3
)
的一條對稱軸是直線x=-
12

②已知函數f(x)=min{sinx,cosx},則f(x)的值域為[-1,
2
2
]
;
③若α,β均為第一象限角,且α>β,則sinα>sinβ.
其中真命題的個數為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
(3a-1)x-2  x<1
logax         x≥1
,現給出下列命題:
①函數f(x)的圖象可以是一條連續(xù)不斷的曲線;
②能找到一個非零實數a,使得函數f (x)在R上是增函數;
③a>1時函數y=f (|x|) 有最小值-2.
其中正確的命題的個數是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)的定義域為D,若存在非零實數l使得對于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的“l(fā)高調函數”.現給出下列命題:
①函數f(x)=2x為R上的“1高調函數”;
②函數f(x)=sin2x為R上的“A高調函數”;
③如果定義域為[-1,+∞)的函數f(x)=x2為[-1,+∞)上“m高調函數”,那么實數m的取值范圍是[2,+∞);
其中正確的命題是
①②③
①②③
.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列命題:
①函數y=sin|x|不是周期函數;        ②函數y=tanx在定義域內是增函數;
③函數y=|cos2x+
1
2
|
的周期是
π
2
;    ④函數y=sin(x+
2
)
是偶函數.
其中正確的命題的序號是
①④
①④

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列命題:
①函數y=cos(
2
3
x+
π
2
)
是奇函數;②函數y=sinx+cosx的最大值為
3
2
;
③函數y=tanx在第一象限內是增函數;
④函數y=sin(2x+
π
2
)
的圖象關于直線x=
π
12
成軸對稱圖形.
其中正確的命題序號是

查看答案和解析>>

同步練習冊答案