【題目】如圖,邊長為4的正方形與矩形所在平面互相垂直,分別為的中點(diǎn),.
(1)求證:平面;
(2)求證:平面;
(3)在線段上是否存在一點(diǎn),使得?若存在,求出的長;若不存在,請說明理由.
【答案】(I)詳見解析;(Ⅱ)詳見解析;(Ⅲ)存在,
【解析】
試題分析:(I)由面面垂直的性質(zhì)定理可直接證得。(Ⅱ)將轉(zhuǎn)化為的中點(diǎn),利用中位線證∥,再根據(jù)線面平行的判定定理即可證MN∥平面CDFE。(Ⅲ)假設(shè)存在點(diǎn)P使AP⊥MN,由(I)易得所以。(Ⅲ)由逆向思維可知只需證得,因?yàn)?/span>,即可證得AP⊥MN。由相似三角形的相似比即可求得FP。
試題解析:(I)因?yàn)?/span>為正方形,所以。
因?yàn)槠矫?/span>,,,所以.
(Ⅱ)連結(jié)
因?yàn)?/span>是的中點(diǎn),且為矩形,所以也是的中點(diǎn)。因?yàn)?/span>是的中點(diǎn),所以∥,因?yàn)?/span>,所以MN∥平面CDFE。
(Ⅲ)過點(diǎn)作交線段于點(diǎn),則點(diǎn)即為所求。因?yàn)?/span>ABCD為正方形,所以∥。因?yàn)?/span>,所以,因?yàn)?/span>,所以。因?yàn)?/span>,且,所以,因?yàn)?/span>,所以。因?yàn)?/span>與相似,所以,因?yàn)?/span>,所以。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某次體檢,6位同學(xué)的身高(單位:米)分別為1.72,1.78,1.75,1.80,1.69,1.77則這組數(shù)據(jù)的中位數(shù)是_________(米).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某射手的一次射擊中,射中10環(huán)、9環(huán)、8環(huán)的概率分別為0.2、0.3、0.1,則此射手在一次射擊中不超過8環(huán)的概率為_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-1:幾何證明選講
如圖所示,已知PA與⊙O相切,A為切點(diǎn),PBC為割線,弦CD∥AP,AD、BC相交于E點(diǎn),F為CE上一點(diǎn),且DE2=EF·EC.
(1)求證:P=EDF;
(2)求證:CE·EB=EF·EP.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)a=1時(shí),求函數(shù)f(x)在[1,e]上的最小值和最大值;
(2)當(dāng)a≤0時(shí),討論函數(shù)f(x)的單調(diào)性;
(3)是否存在實(shí)數(shù)a,對任意的x1,x2(0,+∞),且x1≠x2,都有恒成立.若存在,求出a的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四名同學(xué)根據(jù)各自的樣本數(shù)據(jù)研究變量x,y之間的相關(guān)關(guān)系,并求得回歸直線方程,分別得到以下四個(gè)結(jié)論:
①y與x負(fù)相關(guān)且=2.347x-6.423;
②y與x負(fù)相關(guān)且=-3.476x+5.648;
③y與x正相關(guān)且=5.437x+8.493;
④y與x正相關(guān)且=-4.326x-4.578.
其中一定不正確的結(jié)論的序號是( )
A.①② B.②③ C.③④ D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)在上不具有單調(diào)性,求實(shí)數(shù)的取值范圍;
(2)若.
(ⅰ)求實(shí)數(shù)的值;
(ⅱ)設(shè),,,當(dāng)時(shí),試比較,,的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)設(shè),求的單調(diào)區(qū)間;
(2)若在處取得極大值,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中.
(1)當(dāng)時(shí),恒成立,求的取值范圍;
(2)討論函數(shù)的極值點(diǎn)的個(gè)數(shù),并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com