①(
4
3
-1+(4 -
3
4
2+(
8
)-
4
3
-16-0.75
②lg25+lg2lg50+
5
×2 
1
2
log25
考點:對數(shù)的運算性質(zhì),有理數(shù)指數(shù)冪的化簡求值
專題:函數(shù)的性質(zhì)及應用
分析:①利用分數(shù)指數(shù)冪的性質(zhì)和運算法則求解.
②利用對數(shù)的性質(zhì)和運算法則求解.
解答: 解:①(
4
3
-1+(4 -
3
4
2+(
8
)-
4
3
-16-0.75
=
3
4
+2-3
+2-2-2-3
=
3
4
+
1
4

=1.
②lg25+lg2lg50+
5
×2 
1
2
log25

=lg25+2lg2lg5+
5
2
1
2
log25

=(lg5+lg2)2+
5
5

=1+5
=6.
點評:本題考查指數(shù)和對數(shù)的化簡求值,是基礎題,解題時要認真審題,注意運算法則的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知p,q∈R,則“q<p<0”是“|
p
q
|<1”的( 。
A、充分非必要條件
B、必要非充分條件
C、充要條件
D、既非充分又非必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
x-1
的定義域是(  )
A、{x|x<1}
B、{x|x≤1}
C、{x|x>1}
D、{x|x≥1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等比數(shù)列{an}中,已知a1=6,a2=12,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(cosθ,0),
b
=(1,-2),則|
a
-
b
|的最大、最小值分別是( 。
A、2
2
與2
B、2
2
5
C、
5
與2
D、8與4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=(
1
2
x2-2x+3的單調(diào)遞增區(qū)間為( 。
A、(-1,1)
B、[1,+∞)
C、(-∞,1]
D、(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x,y為正實數(shù),則( 。
A、10lnx-lny=10lnx-10lny
B、10ln(x-y)=
10lnx
10lny
C、10 
lnx
lny
=10lnx-10lny
D、10 ln
x
y
=
10lnx
10lny

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,已知點M(a,3)是拋物線y2=4x上一定點,直線AM、BM的斜率互為相反數(shù),且與拋物線另交于A、B兩個不同的點.
(1)求點M到其準線的距離;
(2)求證:直線AB的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知P為△ABC內(nèi)一點,
PA
+2
PB
+3
PC
=
0
,則S△PAB:S△PBC:S△PAC=
 

查看答案和解析>>

同步練習冊答案