3.給出下列三個命題:
①若命題p:2是實數(shù),命題q:2是奇數(shù),則p或q為真命題;
②記函數(shù)f(x)是導函數(shù)為f′(x),若f′(x0)=0,則f(x0)是f(x)的極值;
③“a=3”是“直線l1::x+ay-3=0,l2:(a-1)x+2ay+1=0平行“的充要條件.
則真命題的序號是①.

分析 ①,由命題p為真,得p或q為真命題;
②,例如函數(shù)f(x)=x3滿足f′(0)=0,但f(0)不是f(x)的極值;
③,當a=0時,直線l1::x+ay-3=0,l2:(a-1)x+2ay+1=0平行;

解答 解:對于①,因為命題p為真,∴p或q為真命題,故正確;
對于②,例如函數(shù)f(x)=x3滿足f′(0)=0,但f(0)不是f(x)的極值,故錯;
對于③,當a=0時,直線l1::x+ay-3=0,l2:(a-1)x+2ay+1=0平行,故錯;
故答案為:①

點評 本題考查了命題真假的判定,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.已知直線l經(jīng)過直線3x+4y-2=0與直線x-y+4=0的交點P,且垂直于直線x-2y-1=0
(Ⅰ)求直線l的方程
(Ⅱ)直線l與曲線y2+2x=0交于A,B兩點,求|AB|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.函數(shù)y=$\frac{1-{2}^{x}}{{2}^{x}+3}$的值域是(-1,$\frac{1}{3}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.某機構通過對某企業(yè)2016年的生產(chǎn)經(jīng)營情況的調(diào)查,得到每月利潤y(單位:萬元)與相應月份數(shù)x的部分數(shù)據(jù)如表:
 x 1 4 7 12
 y 229 244 241 196
(1)根據(jù)如表數(shù)據(jù),請從下列三個函數(shù)中選取一個恰當?shù)暮瘮?shù)描述y與x的變化關系,并說明理由,y=ax3+b,y=-x2+ax+b,y=a•bx
(2)利用(1)中選擇的函數(shù),估計月利潤最大的是第幾個月,并求出該月的利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.在正四棱柱ABCD-A1B1C1D1中,若AA1=2AB,則異面直線BD1與CC1所成角的正切值為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知直線ax+by+c=0始終平分圓C:x2+y2-2x+4y-4=0(C為圓心)的周長,設直線l:(2a-b)x+(2b-c)y+(2c-a)=0,過點P(6,9)作l的垂線,垂足為H,則線段CH長度的取值范圍是[$\sqrt{2},9\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,在平面直角坐標系xOy中,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為$\frac{\sqrt{3}}{2}$,過C的左焦點F1,且垂直于x軸的直線被橢圓C截得的線段長為1.
(1)求橢圓C的方程;
(2)設橢圓C的左、右頂點分別為A,B,直線l經(jīng)過點B且垂直于x軸,點P是點C上異于A,B的任意一點,直線AP交直線l于點Q.
①設直線OQ,BP的斜率分別為k1,k2,求證:k1•k2為定值;
②當點P運動時,試判斷點Q與以BP為直徑的圓的位置關系?并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.若變量x,y滿足$\left\{\begin{array}{l}x-4y+3≤0\\ 3x+5y-25≤0\\ x≥1\end{array}\right.$,實數(shù)$\frac{z}{2}$是2x和y的等差中項,則z的最大值為(  )
A.3B.6C.12D.15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.給出下列三個命題:
①“若x2+2x-3≠0則x≠1”為假命題;
②若p∧q為假命題,則p、q均為假命題;
③命題p:?x∈R,2x>0,則?p:?x∈R,2x≤0,
其中正確的個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

同步練習冊答案