(2012•藍山縣模擬)已知正項數(shù)列{an}的首項a1=
1
2
,函數(shù)f(x)=
x
1+x
,g(x)=
2x+1
x+2

(1)若正項數(shù)列{an}滿足an+1=f(an)(n∈N*),證明:{
1
an
}是等差數(shù)列,并求數(shù)列{an}的通項公式;
(2)若正項數(shù)列{an}滿足an+1≤f(an)(n∈N*),數(shù)列{bn}滿足bn=
an
n+1
,證明:b1+b2+…+bn<1;
(3)若正項數(shù)列{an}滿足an+1=g(an),求證:|an+1-an|≤
3
10
•(
3
7
n-1
分析:(1)利用an+1=f(an)(n∈N*),推出an+1與an的關系,然后推出{
1
an
}是等差數(shù)列,并求數(shù)列{an}的通項公式;
(2)通過an+1≤f(an)(n∈N*),推出an
1
n+1
,利用bn=
an
n+1
,放大bn,然后通過求和b1+b2+…+bn證明結論.
(3)由題意推出a2-a1>0.證明an+1-an>0,數(shù)列是遞增數(shù)列,推出|an+1-an|與|an-an-1|的關系,通過放縮法證明即可.
解答:證明:(1)∵an+1=f(an)=
an
1+an
,所以
1
an+1
=
an+1
an
=
1
an
+1

1
an+1
-
1
an
=1

∴{
1
an
}是以2為首項,1為公差的等差數(shù)列,
1
an
=2+(n-1)
,即an=
1
n+1
.(3分)
(2)∵an+1≤f(an)=
an
1+an
,an>0,
1
an+1
an+1
an
,即
1
an+1
-
1
an
≥1

當n≥2時
1
an
-
1
a1
=(
1
a2
-
1
a1
)+(
1
a3
-
1
a2
)+…+(
1
an
-
1
an-1
)≥n-1

1
an
≥n+1

an
1
n+1

當n=1時,上式也成立,
an
1
n+1
,(n∈N*
∴bn=
an
n+1
1
(n+1)2
1
n(n+1)
=
1
n
-
1
n+1

∴b1+b2+…+bn(1-
1
2
)+(
1
2
-
1
3
)  +…+(
1
n
-
1
n+1
)
=1-
1
n+1
<1
.(8分)
(3)∵a1=
1
2
,a2=g(a1)=
4
5
,a2-a1=
4
5
-
1
2
=
3
10
>0.
又∵an+1-an=
2an+1
2+an
-
2an-1+1
2+an-1
=
3(an-an-1
(an+2)(an-1+2) 
,
由迭代關系可知,an+1-an>0,∴an≥a1=
1
2

又∵(2+an)(2+an-1)=(2+
2an-1+1
2+an-1
)(2+an-1)=5+4an-1≥7,
3
(2+an)(2+an-1
3
7

∴|an+1-an|=
3
(2+an)(2+an-1)
|an-an-1|≤
3
7
|an-an-1|,
∴|an+1-an|≤
3
7
|an-an-1|≤(
3
7
2|an-1-an-2|≤…≤(
3
7
n-1|a2-a1|=
3
10
3
7
n-1.(13分)
點評:本題考查放縮法的應用,等差關系的確定,數(shù)列與不等式的綜合應用,考查分析問題解決問題的能力,轉化思想的應用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•藍山縣模擬)已知m是一個給定的正整數(shù),如果兩個整數(shù)a,b被m除得的余數(shù)相同,則稱a與b對模m同余,記作a≡b(modm),例如:5≡13(mod4).若22010≡r(mod7),則r可以為( 。

查看答案和解析>>

同步練習冊答案