【題目】2019年春節(jié)期間,我國高速公路繼續(xù)執(zhí)行“節(jié)假日高速免費(fèi)政策”.某路橋公司為掌握春節(jié)期間車輛出行的高峰情況,在某高速收費(fèi)點(diǎn)處記錄了大年初三上午9:20~10:40這一時間段內(nèi)通過的車輛數(shù),統(tǒng)計(jì)發(fā)現(xiàn)這一時間段內(nèi)共有600輛車通過該收費(fèi)點(diǎn),它們通過該收費(fèi)點(diǎn)的時刻的頻率分布直方圖如圖所示,其中時間段9:20~9:40記作區(qū)間,9:40~10:00記作,10:00~10:20記作,10:20~10:40記作.比方:10點(diǎn)04分,記作時刻64.
(1)估計(jì)這600輛車在9:20~10:40時間段內(nèi)通過該收費(fèi)點(diǎn)的時刻的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);
(2)為了對數(shù)據(jù)進(jìn)行分析,現(xiàn)采用分層抽樣的方法從這600輛車中抽取10輛,再從這10輛車中隨機(jī)抽取4輛,記為9:20~10:00之間通過的車輛數(shù),求的分布列與數(shù)學(xué)期望;
(3)由大數(shù)據(jù)分析可知,車輛在春節(jié)期間每天通過該收費(fèi)點(diǎn)的時刻服從正態(tài)分布,其中可用這600輛車在9:20~10:40之間通過該收費(fèi)點(diǎn)的時刻的平均值近似代替,可用樣本的方差近似代替(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表),已知大年初五全天共有1000輛車通過該收費(fèi)點(diǎn),估計(jì)在9:46~10:40之間通過的車輛數(shù)(結(jié)果保留到整數(shù)).
參考數(shù)據(jù):若,則,,.
【答案】(1)10點(diǎn)04分;(2)詳見解析;(3)819輛.
【解析】
(1)用每組中點(diǎn)值乘以頻率,然后相加,得到平均值.(2)先用分層抽樣的知識計(jì)算出量車中位于的車輛數(shù),然后利用超幾何分布的知識計(jì)算出分布列,并求得數(shù)學(xué)期望.(3)由(1)可知,計(jì)算出方差和標(biāo)準(zhǔn)差,利用正態(tài)分布的對稱性,計(jì)算出在9:46~10:40這一時間段內(nèi)通過的車輛的概率,乘以得到所求車輛數(shù).
解:(1)這600輛車在9:20~10:40時間段內(nèi)通過該收費(fèi)點(diǎn)的時刻的平均值為,即10點(diǎn)04分。
(2)結(jié)合頻率分布直方圖和分層抽樣的方法可知:抽取的10輛車中,在10:00前通過的車輛數(shù)就是位于時間分組中在這一區(qū)間內(nèi)的車輛數(shù),即,所以的可能取值為0,1,2,3,4。
所以,,,,,
所以的分布列為
0 | 1 | 2 | 3 | 4 | |
所以.
(3)由(1)可得,
,
所以.
估計(jì)在9:46~10:40這一時間段內(nèi)通過的車輛數(shù),也就是通過的車輛數(shù),
由,得 ,
所以,估計(jì)在9:46~10:40這一時間段內(nèi)通過的車輛數(shù)為(輛).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖:在四棱錐中,平面.,,.點(diǎn)是與的交點(diǎn),點(diǎn)在線段上且.
(1)證明:平面;
(2)求直線與平面所成角的正弦值;
(3)求二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為培養(yǎng)學(xué)生的閱讀習(xí)慣,某校開展了為期一年的“弘揚(yáng)傳統(tǒng)文化,閱讀經(jīng)典名著”活動. 活動后,為了解閱讀情況,學(xué)校統(tǒng)計(jì)了甲、乙兩組各10名學(xué)生的閱讀量(單位:本),統(tǒng)計(jì)結(jié)果用莖葉圖記錄如下,乙組記錄中有一個數(shù)據(jù)模糊,無法確認(rèn),在圖中以a表示.
(Ⅰ)若甲組閱讀量的平均值大于乙組閱讀量的平均值,求圖中a的所有可能取值;
(Ⅱ)將甲、乙兩組中閱讀量超過15本的學(xué)生稱為“閱讀達(dá)人”. 設(shè),現(xiàn)從所有的“閱讀達(dá)人”里任取2人,求至少有1人來自甲組的概率;
(Ⅲ)記甲組閱讀量的方差為. 若在甲組中增加一個閱讀量為10的學(xué)生,并記新得到的甲組閱讀量的方差為,試比較,的大小.(結(jié)論不要求證明)
(注:,其中為數(shù)據(jù)的平均數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是橢圓與拋物線的一個公共點(diǎn),且橢圓與拋物線具有一個相同的焦點(diǎn).
(1)求橢圓及拋物線的方程;
(2)設(shè)過且互相垂直的兩動直線,與橢圓交于兩點(diǎn),與拋物線交于兩點(diǎn),求四邊形面積的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D為線段AC的中點(diǎn),E為線段PC上一點(diǎn).
(1)求證:PA⊥BD;
(2)求證:平面BDE⊥平面PAC;
(3)當(dāng)PA∥平面BDE時,求三棱錐E-BCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著互聯(lián)網(wǎng)技術(shù)的快速發(fā)展,人們更加關(guān)注如何高效地獲取有價(jià)值的信息,網(wǎng)絡(luò)知識付費(fèi)近兩年呈現(xiàn)出爆發(fā)式的增長,為了了解網(wǎng)民對網(wǎng)絡(luò)知識付費(fèi)的態(tài)度,某網(wǎng)站隨機(jī)抽查了歲及以上不足歲的網(wǎng)民共人,調(diào)查結(jié)果如下:
(1)請完成上面的列聯(lián)表,并判斷在犯錯誤的概率不超過的前提下,能否認(rèn)為網(wǎng)民對網(wǎng)絡(luò)知識付費(fèi)的態(tài)度與年齡有關(guān)?
(2)在上述樣本中用分層抽樣的方法,從支持和反對網(wǎng)絡(luò)知識付費(fèi)的兩組網(wǎng)民中抽取名,若在上述名網(wǎng)民中隨機(jī)選人,求至少1人支持網(wǎng)絡(luò)知識付費(fèi)的概率.
附:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,四邊形為菱形,且,,分別為棱,的中點(diǎn).
(1)求證:平面;
(2)若平面,,求平面與平面所成二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,點(diǎn)E為棱PC的中點(diǎn).
(1)證明:BE⊥DC;
(2)求直線BE與平面PBD所成角的正弦值;
(3)若F為棱PC上一點(diǎn),滿足BF⊥AC,求二面角F-AB-P的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com