【題目】2019年春節(jié)期間,我國高速公路繼續(xù)執(zhí)行“節(jié)假日高速免費(fèi)政策”.某路橋公司為掌握春節(jié)期間車輛出行的高峰情況,在某高速收費(fèi)點(diǎn)處記錄了大年初三上午9:2010:40這一時間段內(nèi)通過的車輛數(shù),統(tǒng)計(jì)發(fā)現(xiàn)這一時間段內(nèi)共有600輛車通過該收費(fèi)點(diǎn),它們通過該收費(fèi)點(diǎn)的時刻的頻率分布直方圖如圖所示,其中時間段9:20940記作區(qū)間9:4010:00記作,10:0010:20記作10:2010:40記作.比方:10點(diǎn)04分,記作時刻64.

1)估計(jì)這600輛車在9:2010:40時間段內(nèi)通過該收費(fèi)點(diǎn)的時刻的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);

2)為了對數(shù)據(jù)進(jìn)行分析,現(xiàn)采用分層抽樣的方法從這600輛車中抽取10輛,再從這10輛車中隨機(jī)抽取4輛,記9:2010:00之間通過的車輛數(shù),求的分布列與數(shù)學(xué)期望;

3)由大數(shù)據(jù)分析可知,車輛在春節(jié)期間每天通過該收費(fèi)點(diǎn)的時刻服從正態(tài)分布,其中可用這600輛車在9:2010:40之間通過該收費(fèi)點(diǎn)的時刻的平均值近似代替,可用樣本的方差近似代替(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表),已知大年初五全天共有1000輛車通過該收費(fèi)點(diǎn),估計(jì)在9:4610:40之間通過的車輛數(shù)(結(jié)果保留到整數(shù)).

參考數(shù)據(jù):若,則,,.

【答案】(1)10點(diǎn)04分;(2)詳見解析;(3)819輛.

【解析】

1)用每組中點(diǎn)值乘以頻率,然后相加,得到平均值.2)先用分層抽樣的知識計(jì)算出量車中位于的車輛數(shù),然后利用超幾何分布的知識計(jì)算出分布列,并求得數(shù)學(xué)期望.3)由(1)可知,計(jì)算出方差和標(biāo)準(zhǔn)差,利用正態(tài)分布的對稱性,計(jì)算出在9:4610:40這一時間段內(nèi)通過的車輛的概率,乘以得到所求車輛數(shù).

解:(1)這600輛車在9:2010:40時間段內(nèi)通過該收費(fèi)點(diǎn)的時刻的平均值為,即10點(diǎn)04分。

2)結(jié)合頻率分布直方圖和分層抽樣的方法可知:抽取的10輛車中,在10:00前通過的車輛數(shù)就是位于時間分組中在這一區(qū)間內(nèi)的車輛數(shù),即,所以的可能取值為0,1,2,3,4。

所以,,,,

所以的分布列為

0

1

2

3

4

所以.

3)由(1)可得,

,

所以.

估計(jì)在9:4610:40這一時間段內(nèi)通過的車輛數(shù),也就是通過的車輛數(shù),

,得 ,

所以,估計(jì)在9:4610:40這一時間段內(nèi)通過的車輛數(shù)為(輛).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖:在四棱錐中,平面.,,.點(diǎn)的交點(diǎn),點(diǎn)在線段上且.

(1)證明:平面

(2)求直線與平面所成角的正弦值;

(3)求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為培養(yǎng)學(xué)生的閱讀習(xí)慣,某校開展了為期一年的“弘揚(yáng)傳統(tǒng)文化,閱讀經(jīng)典名著”活動. 活動后,為了解閱讀情況,學(xué)校統(tǒng)計(jì)了甲、乙兩組各10名學(xué)生的閱讀量(單位:本),統(tǒng)計(jì)結(jié)果用莖葉圖記錄如下,乙組記錄中有一個數(shù)據(jù)模糊,無法確認(rèn),在圖中以a表示.

(Ⅰ)若甲組閱讀量的平均值大于乙組閱讀量的平均值,求圖中a的所有可能取值;

(Ⅱ)將甲、乙兩組中閱讀量超過15本的學(xué)生稱為“閱讀達(dá)人”. 設(shè),現(xiàn)從所有的“閱讀達(dá)人”里任取2人,求至少有1人來自甲組的概率;

(Ⅲ)記甲組閱讀量的方差為. 若在甲組中增加一個閱讀量為10的學(xué)生,并記新得到的甲組閱讀量的方差為,試比較,的大小.(結(jié)論不要求證明)

(注:,其中為數(shù)據(jù)的平均數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是橢圓與拋物線的一個公共點(diǎn),且橢圓與拋物線具有一個相同的焦點(diǎn)

(1)求橢圓及拋物線的方程;

(2)設(shè)過且互相垂直的兩動直線與橢圓交于兩點(diǎn),與拋物線交于兩點(diǎn),求四邊形面積的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐PABC中,PAAB,PABC,ABBC,PAABBC=2,D為線段AC的中點(diǎn),E為線段PC上一點(diǎn).

(1)求證:PABD;

(2)求證:平面BDE平面PAC;

(3)當(dāng)PA平面BDE時,求三棱錐EBCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著互聯(lián)網(wǎng)技術(shù)的快速發(fā)展,人們更加關(guān)注如何高效地獲取有價(jià)值的信息,網(wǎng)絡(luò)知識付費(fèi)近兩年呈現(xiàn)出爆發(fā)式的增長,為了了解網(wǎng)民對網(wǎng)絡(luò)知識付費(fèi)的態(tài)度,某網(wǎng)站隨機(jī)抽查了歲及以上不足歲的網(wǎng)民共人,調(diào)查結(jié)果如下:

(1)請完成上面的列聯(lián)表,并判斷在犯錯誤的概率不超過的前提下,能否認(rèn)為網(wǎng)民對網(wǎng)絡(luò)知識付費(fèi)的態(tài)度與年齡有關(guān)?

(2)在上述樣本中用分層抽樣的方法,從支持和反對網(wǎng)絡(luò)知識付費(fèi)的兩組網(wǎng)民中抽取名,若在上述名網(wǎng)民中隨機(jī)選人,求至少1人支持網(wǎng)絡(luò)知識付費(fèi)的概率.

附:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若恒成立,求處的切線方程;

(2)若有且只有兩個整數(shù)解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,四邊形為菱形,且,分別為棱,的中點(diǎn).

(1)求證:平面;

(2)若平面,求平面與平面所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,PA⊥底面ABCD,ADABABDC,ADDCAP2,AB1,點(diǎn)E為棱PC的中點(diǎn).

(1)證明:BEDC;

(2)求直線BE與平面PBD所成角的正弦值;

(3)F為棱PC上一點(diǎn),滿足BFAC,求二面角FABP的余弦值.

查看答案和解析>>

同步練習(xí)冊答案