在平面直角坐標(biāo)系xoy中,橢圓C:數(shù)學(xué)公式+數(shù)學(xué)公式=1(a>b>0)的右焦點(diǎn)為F(4m,0)(M>0,m為常數(shù)),離心率等于0.8,過(guò)焦點(diǎn)F、傾斜角為θ的直線(xiàn)l交橢圓C于M、N兩點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若θ=90°時(shí),數(shù)學(xué)公式+數(shù)學(xué)公式=數(shù)學(xué)公式,求實(shí)數(shù)m;
(3)試問(wèn)數(shù)學(xué)公式+數(shù)學(xué)公式的值是否與θ的大小無(wú)關(guān),并證明你的結(jié)論.

解:(1)由題意,c=4m,=0.8,∴a=5m,b=3m,∴橢圓C的標(biāo)準(zhǔn)方程為
(2)θ=90°時(shí),N(4m,),NF=MF=
+=,∴=,∴m=;
(3)+=,證明如下:
由(2)知,當(dāng)斜率不存在時(shí),+=
當(dāng)斜率存在時(shí),設(shè)1:y=k(x-4m)代入橢圓方程得(9+25k2)x2-200mk2x+25m2(16k2-9)=0,
設(shè)M(x1,y1),N(x2,y2),則MF=e()=5m-,NF=5m-,
+==與θ無(wú)關(guān).
分析:(1)利用橢圓的性質(zhì),可得橢圓的標(biāo)準(zhǔn)方程;
(2)求出MF、NF,利用+=,即可求實(shí)數(shù)m;
(3)分類(lèi)討論,利用焦半徑公式,結(jié)合韋達(dá)定理,可知+的值與θ的大小無(wú)關(guān).
點(diǎn)評(píng):本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線(xiàn)與橢圓的位置關(guān)系,考查分類(lèi)討論的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
上一點(diǎn)到橢圓E的兩個(gè)焦點(diǎn)距離之和為2
3
,橢圓E的離心率為
6
3

(1)求橢圓E的方程;
(2)若b為橢圓E的半短軸長(zhǎng),記C(0,b),直線(xiàn)l經(jīng)過(guò)點(diǎn)C且斜率為2,與直線(xiàn)l平行的直線(xiàn)AB過(guò)點(diǎn)(1,0)且交橢圓于A、B兩點(diǎn),求△ABC的面積S的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xoy中,橢圓的參數(shù)方程為
x=
3
cosθ
y=sinθ
為參數(shù)).以o為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為2ρcos(θ+
π
3
)=3
6
.求橢圓上點(diǎn)到直線(xiàn)距離的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系xOy中,橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左焦點(diǎn)為F,右頂點(diǎn)為A,動(dòng)點(diǎn)M為右準(zhǔn)線(xiàn)上一點(diǎn)(異于右準(zhǔn)線(xiàn)與x軸的交點(diǎn)),設(shè)線(xiàn)段FM交橢圓C于點(diǎn)P,已知橢圓C的離心率為
2
3
,點(diǎn)M的橫坐標(biāo)為
9
2

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)直線(xiàn)PA的斜率為k1,直線(xiàn)MA的斜率為k2,求k1•k2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,橢圓C的中心為原點(diǎn),焦點(diǎn)F1,F(xiàn)2在x軸上,離心率為
1
2
.過(guò)F1的直線(xiàn)L交C于A,B兩點(diǎn),且△ABF2的周長(zhǎng)為16,那么C的方程為
x2
16
+
y2
12
=1
x2
16
+
y2
12
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,橢圓C的中心在坐標(biāo)原點(diǎn)O,右焦點(diǎn)為F.若C的右準(zhǔn)線(xiàn)l的方程為x=4,離心率e=
2
2

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)P為直線(xiàn)l上一動(dòng)點(diǎn),且在x軸上方.圓M經(jīng)過(guò)O、F、P三點(diǎn),求當(dāng)圓心M到x軸的距離最小時(shí)圓M的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案