某產(chǎn)品的廣告費(fèi)用x與銷(xiāo)售額y的統(tǒng)計(jì)數(shù)據(jù)如下表:
廣告費(fèi)用x(萬(wàn)元)4235
銷(xiāo)售額y(萬(wàn)元)49263954
根據(jù)上表可得回歸方程
y
=bx+a中的b約等于9,據(jù)此模型預(yù)告廣告費(fèi)用為7萬(wàn)元時(shí),銷(xiāo)售額約為( 。
A、73.5萬(wàn)元
B、74.5萬(wàn)元
C、75.5萬(wàn)元
D、76.0萬(wàn)元
考點(diǎn):線性回歸方程
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:先確定樣本中心點(diǎn),利用回歸方程
y
=bx+a中的b約等于9,求出a,即可求得回歸方程,從而可預(yù)報(bào)廣告費(fèi)用為7萬(wàn)元時(shí)銷(xiāo)售額.
解答: 解:由題意,
.
x
=
1
4
(4+2+3+5)=
7
2
.
y
=
1
4
(49+26+39+54)=42
∵回歸方程
y
=bx+a中的b約等于9,
∴42=9×
7
2
+a,
∴a=
21
2

y
=9x+
21
2

當(dāng)x=7時(shí),
y
=9x+
21
2
=73.5萬(wàn)元
故選A.
點(diǎn)評(píng):本題考查回歸方程,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

推理過(guò)程“大前提:
 
,小前提;四邊形ABCD是矩形,結(jié)論:四邊形ABCD的對(duì)角線相等.”應(yīng)補(bǔ)充的大前提是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(-x,2x),
b
=(3x,2),若
a
b
的夾角是鈍角,則x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線C的極坐標(biāo)方程為:ρ=2
3
cosθ,直線的極坐標(biāo)方程為:2ρcosθ=
3
.則它們相交所得弦長(zhǎng)等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F1、F2分別是雙曲線
x2
5
-
y2
4
=1的左、右焦點(diǎn).若點(diǎn)P在雙曲線上,且
PF1
PF2
=0,則|
PF1
+
PF2
|等于(  )
A、3B、6C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是一個(gè)結(jié)構(gòu)圖,在□處應(yīng)填入( 。
A、對(duì)稱性B、解析式
C、奇偶性D、圖象交換

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=x-lnx的單調(diào)遞增區(qū)間是( 。
A、(0,1)
B、(-∞,1)
C、(1,2)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若一個(gè)空間幾何體的三視圖正視圖和側(cè)視圖都是半徑為1的半圓,俯視圖是半徑為1的圓,則該幾何體的體積等于( 。
A、4π
B、
3
C、
3
D、
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果雙曲線的漸近線方程為y=±
3
4
x,則離心率為( 。
A、
5
3
B、
5
4
C、
5
3
5
4
D、
3

查看答案和解析>>

同步練習(xí)冊(cè)答案