分析 (1)由三角形的面積公式可得ab=4,結(jié)合余弦定理可得a+b=4,聯(lián)立可解.
(2)已知條件結(jié)合三角函數(shù)公式化簡可得sinBcosA=2sinAcosA,分別可得A=$\frac{π}{2}$或B=$\frac{π}{2}$,即可證明
解答 解:(1)由余弦定理及已知條件得,a2+b2-ab=4,
又因?yàn)椤鰽BC的面積等于$\sqrt{3}$,所以$\frac{1}{2}absinC=\sqrt{3}$,得ab=4.
聯(lián)立方程組$\left\{\begin{array}{l}{a^2}+{b^2}-ab=4\\ ab=4\end{array}\right.$,
解得a=2,b=2.
(2)由題意得sin(B+A)+sin(B-A)=4sinAcosA,
即sinBcosA=2sinAcosA,
當(dāng)cosA=0時(shí),$A=\frac{π}{2}$,△ABC是直角三角形;
當(dāng)cosA≠0時(shí),得sinB=2sinA=2sin(B+C)=2sinBcosC+2cosBsinC,
$C=\frac{π}{3}$代入上式得$sinB=sinB+\sqrt{3}cosB$,
故$cosB=0,B=\frac{π}{2}$,
故△ABC是直角三角形
點(diǎn)評 本題考查三角形的面積公式以及三角形的余弦定理,三角形形狀的判斷,涉及三角函數(shù)公式的應(yīng)用,屬中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 9 | B. | 4 | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com