如圖1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=2,AD=CD=1.將△ADC沿AC折起,使平面ADC⊥平面ABC,得到幾何體D-ABC,如圖2所示.求幾何體D-ABC的體積.
分析:取AC中點(diǎn)O,連接DO,則OD⊥平面ABC,再利用三棱錐體積公式,即可求得結(jié)論.
解答:解:取AC中點(diǎn)O,連接DO,則DO⊥AC,
∵面ADC⊥面ABC,面ADC∩面ABC=AC,DO?面ACD,
∴OD⊥平面ABC,…(3分)
∴OD為三棱錐D-ABC的高,OD=
2
2
.…(4分)
在圖1中,可得AC=BC=
2
,從而AC2+BC2=AB2,故AC⊥BC,S△ABC=1.…(6分)
VD-ABC=
1
3
Sh=
1
3
×1×
2
2
=
2
6
…(8分)
點(diǎn)評(píng):本題考查三棱錐體積的計(jì)算,考查學(xué)生的計(jì)算能力,正確求三棱錐的高是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2,M為線段AB的中點(diǎn).將△ADC沿AC折起,使平面ADC⊥平面ABC,得到幾何體D-ABC,如圖2所示.
(Ⅰ)求證:BC⊥平面ACD;
(Ⅱ)求二面角A-CD-M的余弦值.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•肇慶二模)如圖1,在直角梯形ABCD中,已知AD∥BC,AD=AB=1,∠BAD=90°,∠BCD=45°,AE⊥BD.將△ABD沿對(duì)角線BD折起(圖2),記折起后點(diǎn)A的位置為P且使平面PBD⊥平面BCD.
(1)求三棱錐P-BCD的體積;
(2)求平面PBC與平面PCD所成二面角的平面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•海淀區(qū)二模)如圖1,在直角梯形ABCD中,∠ABC=∠DAB=90°,∠CAB=30°,BC=2,AD=4.把△DAC沿對(duì)角線AC折起到△PAC的位置,如圖2所示,使得點(diǎn)P在平面ABC上的正投影H恰好落在線段AC上,連接PB,點(diǎn)E,F(xiàn)分別為線段PA,PB的中點(diǎn).
(Ⅰ)求證:平面EFH∥平面PBC;
(Ⅱ)求直線HE與平面PHB所成角的正弦值;
(Ⅲ)在棱PA上是否存在一點(diǎn)M,使得M到P,H,A,F(xiàn)四點(diǎn)的距離相等?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•韶關(guān)二模)如圖1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=
12
AB=2
,點(diǎn)E為AC中點(diǎn),將△ADC沿AC折起,使平面ADC⊥平面ABC,得到幾何體D-ABC,如圖2所示.
(1)求證:DA⊥BC;
(2)在CD上找一點(diǎn)F,使AD∥平面EFB;
(3)求點(diǎn)A到平面BCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖1,在直角梯形ABCD中,AB∥CD,∠A=90°,AB=2,CD=6,AD=3,E為CD上一點(diǎn),且DE=4,過E作EF∥AD交BC于F現(xiàn)將△CEF沿EF折起到△PEF,使∠PED=60°,如圖2.
(Ⅰ)求證:PE⊥平面ADP;
(Ⅱ)求異面直線BD與PF所成角的余弦值;
(Ⅲ)在線段PF上是否存在一點(diǎn)M,使DM與平在ADP所成的角為30°?若存在,確定點(diǎn)M的位置;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案