【題目】已知復(fù)數(shù)Z=(m2+5m+6)+(m2﹣2m﹣15)i,當(dāng)實(shí)數(shù)m為何值時(shí):
(1)Z為實(shí)數(shù);
(2)Z為純虛數(shù);
(3)復(fù)數(shù)Z對(duì)應(yīng)的點(diǎn)Z在第四象限.

【答案】
(1)解:由m2﹣2m﹣15=0,得m=﹣3或m=5.所以,當(dāng)m=﹣3或m=5時(shí),z為實(shí)數(shù)
(2)解:由 得m=﹣2.所以,當(dāng)m=﹣2時(shí),z為純虛數(shù)
(3)解:由 得﹣2<m<5.

所以,當(dāng)﹣2<m<5時(shí),復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)Z在第四象限


【解析】(1)由m2﹣2m﹣15=0,解出即可得出;(2)利用純虛數(shù)的定義,由 解出即可得出;(3)利用復(fù)數(shù)的幾何意義可得
【考點(diǎn)精析】本題主要考查了復(fù)數(shù)的定義的相關(guān)知識(shí)點(diǎn),需要掌握形如的數(shù)叫做復(fù)數(shù),分別叫它的實(shí)部和虛部才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐E﹣ABCD中,底面ABCD為正方形,EC⊥平面ABCD,AB= ,CE=1,G為AC與BD交點(diǎn),F(xiàn)為EG中點(diǎn), (Ⅰ)求證:CF⊥平面BDE;
(Ⅱ)求二面角A﹣BE﹣D的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】奇函數(shù)f(x)在(0,+∞)內(nèi)單調(diào)遞增且f(2)=0,則不等式 的解集為( )
A.(﹣∞,﹣2)∪(0,1)∪(1,2)
B.(﹣2,0)∪(1,2)
C.(﹣∞,﹣2)∪(2,+∞)
D.(﹣∞,﹣2)∪(0,1)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= 的定義域?yàn)榧螦,B={x∈Z|0<x<10},C={x∈R|2a+3<x<a+5}.
(1)求A,(RA)∩B;
(2)若A∩C=C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)= +lg(x﹣1)+(x﹣3)0 的定義域?yàn)椋?)
A.{x|1<x≤4}
B.{x|1<x≤4且x≠3}
C.{x|1≤x≤4且x≠3}
D.{x|x≥4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=ax3﹣bx+4,當(dāng)x=2時(shí),函數(shù)f(x)有極值為 , (Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若f(x)=k有3個(gè)解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,長(zhǎng)方體ABCD﹣A1B1C1D1中,AB=AD=1,AA1=2,點(diǎn)P為DD1的中點(diǎn).

(1)求證:直線BD1∥平面PAC;
(2)求證:平面PAC⊥平面BDD1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(用空間向量坐標(biāo)表示解答)如圖,在直三棱柱ABC﹣A1B1C1中,AC=BC=CC1=2,AC⊥BC,D為AB的中點(diǎn).

(1)求證:AC1∥面B1CD
(2)求直線AA1與面B1CD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)的農(nóng)產(chǎn)品A第x天(1≤x≤20,x∈N*)的銷售價(jià)格p=50﹣|x﹣6|(元∕百斤),一農(nóng)戶在第x天(1≤x≤20,x∈N*)農(nóng)產(chǎn)品A的銷售量q=a+|x﹣8|(百斤)(a為常數(shù)),且該農(nóng)戶在第7天銷售農(nóng)產(chǎn)品A的銷售收入為2009元.
(1)求該農(nóng)戶在第10天銷售農(nóng)產(chǎn)品A的銷售收入是多少?
(2)這20天中該農(nóng)戶在哪一天的銷售收入最大?為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案