A. | (0,4] | B. | (-4,4] | C. | (-∞,4] | D. | [4,+∞) |
分析 令u(x)=x2-mx+3m,由復(fù)合函數(shù)的單調(diào)性可得函數(shù)u(x)在區(qū)間[2,+∞)上單調(diào)遞增且恒為正實(shí)數(shù),再解不等式組即可.
解答 解:記u(x)=x2-mx+3m,則f(x)=logsinαu(x),
顯然,u(x)在(-∞,$\frac{m}{2}$)上單調(diào)遞減,在($\frac{m}{2}$,+∞)上單調(diào)遞增,
再由復(fù)合函數(shù)的單調(diào)性可得,
函數(shù)u(x)在區(qū)間[2,+∞)上單調(diào)遞增且恒為正實(shí)數(shù),
則$\left\{\begin{array}{l}{\frac{m}{2}≤2}\\{u(2)>0}\end{array}\right.$,解得-4<m≤4,
故選:B.
點(diǎn)評(píng) 本題主要考查了復(fù)合函數(shù)單調(diào)性性的應(yīng)用,二次函數(shù)的圖象和性質(zhì),體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [1,5] | B. | [$\frac{\sqrt{29}}{3}$,$\sqrt{26}$] | C. | [$\sqrt{5}$,$\sqrt{26}$] | D. | [$\frac{\sqrt{2}}{2}$,$\sqrt{26}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ${C}_{n}^{m}$=${C}_{n}^{n-m}$ | B. | ${C}_{m}^{m}$+${C}_{m}^{m-1}$=${C}_{m+1}^{m}$ | ||
C. | ${C}_{5}^{1}$+${C}_{5}^{2}$=${C}_{5}^{3}$ | D. | ${C}_{n+1}^{m}$=${C}_{n}^{m-1}$+${C}_{n-1}^{m}$+${C}_{n-1}^{m-1}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | cosθ-sinθ | B. | sinθ-cosθ | C. | $\sqrt{2}$sinθ | D. | $\sqrt{2}$cosθ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
X | 0 | 1 |
P | 0.1 | 0.9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com