已知AB⊥平面BCD,BC⊥CD,則圖中互相垂直的平面有
3
3
對.
分析:先根據(jù)線面垂直的判定定理判斷線面垂直的情況,再根據(jù)面面垂直的判定定理判斷面面垂直的情況.
解答:解:∵AB⊥平面BCD,AB?平面ABC,AB?平面ABD,
∴平面ABC⊥平面BCD;
平面ABD⊥平面BCD,
∵BC⊥CD,AB⊥CD,AB∩BC=B,
∴CD⊥平面ABC,CD?平面ACD
∴平面ACD⊥平面ABC.
故答案是3
點評:本題考查線面垂直與面面垂直的判定.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

4、如圖所示,已知AB⊥平面BCD,BC⊥CD,則圖中互相垂直的平面有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

17、如圖,已知AB⊥平面BCD,BC⊥CD.請指出圖中所有互相垂直的平面,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知AB⊥平面BCD,M、N分別是AC、AD的中點,BC⊥CD.
(1)求證:MN∥平面BCD;
(2)求證:平面BCD⊥平面ABC;
(3)若AB=1,BC=
3
,求直線AC與平面BCD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知AB⊥平面BCD,M、N分別是AC、AD的中點,BC⊥CD.
(I)求證:MN∥平面BCD;
(II)求證:平面BCD⊥平面ABC;
(III)若AB=1,BC=
3
,求直線AC與平面BCD所成的角.

查看答案和解析>>

同步練習(xí)冊答案