已知函數(shù)
(1)若在[-3,2]上具有單調(diào)性,求實數(shù)的取值范圍。
(2)若有最小值為-12,求實數(shù)的值;

(1);(2)

解析試題分析:(1)二次函數(shù)的單調(diào)性與對稱軸有關(guān),單調(diào)區(qū)間在對稱軸的一側(cè),可數(shù)形結(jié)合解題; 圖像開口上, 對稱軸為,區(qū)間在對稱軸左側(cè)為單調(diào)減函數(shù), 區(qū)間在對稱軸右側(cè)為單調(diào)增函數(shù),
(2)二次函數(shù)在區(qū)間上的最值在端點處或頂點處,遇到對稱軸或區(qū)間含有待定的字母,則要按對稱軸在不在區(qū)間內(nèi)以及區(qū)間中點進(jìn)行討論. 圖像開口上,當(dāng)對稱軸為在區(qū)間內(nèi)時,最小值位于對稱軸處; 當(dāng)區(qū)間在對稱軸左側(cè)為單調(diào)減函數(shù),最小值位于右端點處.
試題解析:
(1)的對稱軸為
上具有單調(diào)性
所以

(2) 由有最小值為
Ⅰ.當(dāng)
解得:
Ⅱ.當(dāng)
解得: (舍)
綜上所述:
考點:二次函數(shù)單調(diào)性與最值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

對于函數(shù),若存在實數(shù)對(),使得等式對定義域中的每一個都成立,則稱函數(shù)是“()型函數(shù)”.
(Ⅰ)判斷函數(shù)是否為 “()型函數(shù)”,并說明理由;
(Ⅱ)若函數(shù)是“()型函數(shù)”,求出滿足條件的一組實數(shù)對;,
(Ⅲ)已知函數(shù)是“()型函數(shù)”,對應(yīng)的實數(shù)對.當(dāng)時,,若當(dāng)時,都有,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

計算
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

提高過江大橋的車輛通行能力可改善整個城市的交通狀況.在一般情況下,大橋上的車流速度(單位:千米/小時)是車流密度(單位:輛/千米)的函數(shù).當(dāng)橋上的車流密度達(dá)到200輛/千米時,造成堵塞,此時車流速度為0;當(dāng)車流密度不超過40輛/千米時,車流速度為80千米/小時.研究表明:當(dāng)時,車流速度是車流密度的一次函數(shù).(1)當(dāng)時,求函數(shù)的表達(dá)式;
(2)當(dāng)車流密度為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位: 輛/小時)f ,可以達(dá)到最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖是某重點中學(xué)學(xué)校運動場平面圖,運動場總面積15000平方米,運動場是由一個矩形和分別以、為直徑的兩個半圓組成,塑膠跑道寬8米,已知塑膠跑道每平方米造價為150元,其它部分造價每平方米80元,

(Ⅰ)設(shè)半圓的半徑(米),寫出塑膠跑道面積的函數(shù)關(guān)系式;
(Ⅱ)由于受運動場兩側(cè)看臺限制,的范圍為,問當(dāng)為何值時,運動場造價最低(第2問取3近似計算).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)滿足,對任意都有,且
(1)求函數(shù)的解析式;
(2)是否存在實數(shù),使函數(shù)上為減函數(shù)?若存在,求出實數(shù)的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知冪函數(shù)(m∈N)的圖象關(guān)于y軸對稱,且在(0,+∞)上是減函數(shù),求滿足的a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了降低能損耗,最近上海對新建住宅的屋頂和外墻都要求建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)=(0≤x≤10),若不建隔熱層,每年能消耗費用為8萬元.設(shè)f(x)為隔熱層建造費用與20年的能消耗費用之和.
(1)求k的值及f(x)的表達(dá)式;
(2)隔熱層修建多厚時,總費用f(x)達(dá)到最小,并求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),,其中實數(shù)
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)函數(shù)的圖象只有一個公共點且存在最小值時,記的最小值為,求的值域;
(3)若在區(qū)間內(nèi)均為增函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案