精英家教網 > 高中數學 > 題目詳情

如圖是某市3月1日至14日的空氣質量指數趨勢圖,空氣質量指數小于100表示空氣質量優(yōu)良,空氣質量指數大于200表示空氣重度污染,某人隨機選擇3月1日至3月13日中的某一天到達該市,并停留2天.

(1)求此人到達當日空氣質量優(yōu)良的概率;
(2)求此人在該市停留期間只有1天空氣重度污染的概率;
(3)由圖判斷從哪天開始連續(xù)三天的空氣質量指數方差最大?(結論不要求證明)

(1)   (2)   (3)從3月5日開始連續(xù)三天的空氣質量指數方差最大

解析解:(1)在3月1日至3月13日這13天中,1日、2日、3日、7日、12日、13日共6天的空氣質量優(yōu)良,所以此人到達當日空氣質量優(yōu)良的概率是.
(2)根據題意,事件“此人在該市停留期間只有1天空氣重度污染”等價于“此人到達該市的日期是4日,或5日,或7日,或8日”,所以此人在該市停留期間只有1天空氣重度污染的概率為.
(3)從3月5日開始連續(xù)三天的空氣質量指數方差最大.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

在高中“自選模塊”考試中,某考場的每位同學都選了一道數學題,第一小組選《數學史與不等式選講》的有1人,選《矩陣變換和坐標系與參數方程》的有5人,第二小組選《數學史與不等式選講》的有2人,選《矩陣變換和坐標系與參數方程》的有4人,現從第一、第二兩小組各任選2人分析得分情況.
(1)求選出的4人均為選《矩陣變換和坐標系與參數方程》的概率;
(2)設X為選出的4個人中選《數學史與不等式選講》的人數,求X的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知A、B、C三個箱子中各裝有2個完全相同的球,每個箱子里的球,有一個球標著號碼1,另一個球標著號碼2,現從A、B、C三個箱子中各摸出1個球.
(1) 若用數組(x,y,z)中的x、y、z分別表示從A、B、C三個箱子中摸出的球的號碼,請寫出數組(x,y,z)的所有情形,并回答一共有多少種;
(2) 如果猜測摸出的這三個球的號碼之和,猜中有獎,那么猜什么數獲獎的可能性最大?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

下表中有三個游戲規(guī)則,袋子中分別裝有大小相同的球,從袋子中取球,分別計算甲獲勝的概率,說明哪個游戲是公平的?

游戲1
 
游戲2
 
游戲3
 
1個紅球和1個白球
 
2個紅球和2個白球
 
3個紅球和1個白球
 
取1個球
 
取1個球,再取1個球
 
取1個球,再取1個球
 
取出的球是紅球→甲勝
 
取出的兩個球同色→甲勝
 
取出的兩個球同色→甲勝
 
取出的球是白球→乙勝
 
取出的兩個球不同色→乙勝
 
取出的兩個球不同色→乙勝
 

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

第17屆亞運會將于2014年9月18日至10月4日在韓國仁川進行,為了搞好接待工作,組委會招募了16名男志愿者和14名女志愿者,調查發(fā)現,男、女志愿者中分別有10人和6人喜愛運動,其余不喜愛.
(1)根據調查數據制作2×2列聯(lián)表;
(2)根據列聯(lián)表的獨立性檢驗,能否認為性別與喜愛運動有關?

參考數據
時,無充分證據判定變量有關聯(lián),可以認為兩變量無關聯(lián);
時,有把握判定變量有關聯(lián);
時,有把握判定變量有關聯(lián);
時,有把握判定變量有關聯(lián).
(參考公式:,其中.)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某單位招聘職工,經過幾輪篩選,一輪從2000名報名者中篩選300名進入二輪筆試,接著按筆試成績擇優(yōu)取100名進入第三輪面試,最后從面試對象中綜合考察聘用50名.
(1)求參加筆試的競聘者能被聘用的概率;
(2)用分層抽樣的方式從最終聘用者中抽取10名進行進行調查問卷,其中有3名女職工,求被聘用的女職工的人數;
(3)單位從聘用的三男和二女中,選派兩人參加某項培訓,至少選派一名女同志參加的概率是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

甲、乙兩人進行投籃比賽,兩人各投3球,誰投進的球數多誰獲勝,已知每次投籃甲投進的概率為,乙投進的概率為,求:
(1)甲投進2球且乙投進1球的概率;
(2)在甲第一次投籃未投進的條件下,甲最終獲勝的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

袋內裝有6個球,這些球依次被編號為1、2、3、……、6,設編號為n的球重n2-6n+12(單位:克),這些球等可能地從袋里取出(不受重量、編號的影響).
(1)從袋中任意取出一個球,求其重量大于其編號的概率;
(2)如果不放回地任意取出2個球,求它們重量相等的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

學校游園活動有這樣一個游戲項目:甲箱子里裝有3個白球,2個黑球,乙箱子里裝有1個白球,2個黑球,這些球除顏色外完全相同.每次游戲從這兩個箱子里各隨機摸出2個球,若摸出的白球不少于2個,則獲獎(每次游戲結束后將球放回原箱).
(1)求在1次游戲中:
①摸出3個白球的概率;②獲獎的概率.
(2)求在兩次游戲中獲獎次數X的分布列及數學期望E(X).

查看答案和解析>>

同步練習冊答案