19.已知數(shù)列{an}的前n項(xiàng)的和為Sn,a1=-1,a2=2,滿足Sn+1=3Sn-2Sn-1-an-1+2(n≥2),則a100=9998.

分析 Sn+1=3Sn-2Sn-1-an-1+2(n≥2),可得Sn+2=3Sn+1-2Sn-an+2,a3=7.相減可得:an+2=3an+1-3an-an-1,變形為:(an+2-an+1)+(an-an-1)=2(an+1-an),利用等差數(shù)列的通項(xiàng)公式可得:an+1-an,再利用“累加求和”方法即可得出.

解答 解:∵Sn+1=3Sn-2Sn-1-an-1+2(n≥2),
可得Sn+2=3Sn+1-2Sn-an+2,a3=7.
∴an+2=3an+1-3an-an-1,
變形為:(an+2-an+1)+(an-an-1)=2(an+1-an),
∴數(shù)列{an+1-an}是等差數(shù)列,首項(xiàng)為3,公差d=(a3-a2)-(a2-a1)=5-3=2.
∴an+1-an=3+2(n-1)=2n+1.
∴a100=(a100-a99)+(a99-a98)+…+(a2-a1)+a1=(2×99+1)+(2×98+1)+…+(2×1+1)+(-1)=$2×\frac{99×(1+99)}{2}$+99-1=9998.
故答案為:9998.

點(diǎn)評(píng) 本題考查了遞推關(guān)系、“累加求和”方法、等差數(shù)列的相同公式及其前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知圓C:(x-1)2+y2=r2(r>0)與直線l:y=x+3,且直線l有唯一的一個(gè)點(diǎn)P,使得過P點(diǎn)作圓C的兩條切線互相垂直,則r=2;設(shè)EF是直線l上的一條線段,若對(duì)于圓C上的任意一點(diǎn)Q,∠EQF≥$\frac{π}{2}$,則|EF|的最小值=4$\sqrt{2}$+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.長方體ABCD-A1B1C1D1中,AB=BC=2,AA1=1,M、N分別是C1D1、CD的中點(diǎn),則異面直線A1N和B1M所成角的余弦值為( 。
A.$\frac{\sqrt{30}}{10}$B.0C.$\frac{\sqrt{15}}{10}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知直線m和不重合的兩個(gè)平面α、β,則下列命題正確的是( 。
A.若m∥α,m?β,則α∥βB.若m∥α,m∥β,則α∥βC.若m⊥α,m∥β,則α⊥βD.若m⊥α,m⊥β,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)y=$\frac{1}{\sqrt{x-{x}^{2}}}$的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知正方形ABCD,E、F分別是AB、CD的中點(diǎn),將△ADE沿DE折起,如圖所示.
(1)證明:BF∥平面ADE;
(2)若過BE的截面與平面ACD交于MN,求證:CD∥MN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若集合A={x|-x2+2x≤0},B={x|x>1},則A∪B等于( 。
A.[2,+∞)B.[0,+∞)C.(1,2]D.(-∞,0]∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,四棱錐P-ABCD的底面ABCD是梯形,AB∥CD,且AB=$\frac{2}{3}$CD,試問在PC上能否找到一點(diǎn)E,使得BE∥平面PAD?若能,請(qǐng)確定點(diǎn)E的位置,并給出證明;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若函數(shù)g(x)=sin4x+$\sqrt{3}$cos4x-1,則下面對(duì)函數(shù)y=g(x)的敘述正確的是( 。
A.曲線y=g(x)的一個(gè)對(duì)稱中心為點(diǎn)(-$\frac{π}{12}$,0)
B.曲線y=g(x)的一個(gè)對(duì)稱軸為直線x=$\frac{kπ}{4}$+$\frac{π}{16}$(k∈Z)
C.函數(shù)y=g(x)在區(qū)間[$\frac{2π}{3}$,$\frac{3π}{4}$]內(nèi)單調(diào)遞減
D.函數(shù)y=g(x)在區(qū)間[$\frac{2π}{3}$,$\frac{3π}{4}$]內(nèi)不單調(diào)

查看答案和解析>>

同步練習(xí)冊(cè)答案