分析 直接利用數(shù)列的極限的運(yùn)算法則化簡(jiǎn)求解即可.
解答 解:$\underset{lim}{n→∞}$$\frac{{n}^{2}+n+1}{2{n}^{2}+3n+2}$=$\underset{lim}{n→∞}\frac{1+\frac{1}{n}+\frac{1}{{n}^{2}}}{2+\frac{3}{n}+\frac{2}{{n}^{2}}}$=$\frac{1+0+0}{2+0+0}$=$\frac{1}{2}$.
故答案為:$\frac{1}{2}$.
點(diǎn)評(píng) 本題考查數(shù)列的極限的運(yùn)算法則的應(yīng)用,考查計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 是奇函數(shù) | B. | 在區(qū)間$(\frac{π}{12},\frac{7π}{12})$上單調(diào)遞增 | ||
C. | $(-\frac{π}{12},0)$為其圖象的一個(gè)對(duì)稱中心 | D. | 最小正周期為π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $f({-\frac{3}{2}})>f({{a^2}+2a+\frac{5}{2}})$ | B. | $f({-\frac{3}{2}})<f({{a^2}+2a+\frac{5}{2}})$ | C. | $f({-\frac{3}{2}})≥f({{a^2}+2a+\frac{5}{2}})$ | D. | $f({-\frac{3}{2}})≤f({{a^2}+2a+\frac{5}{2}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
1 | 2 | 3 | 4 | …第一行 |
2 | 3 | 4 | 5 | …第二行 |
3 | 4 | 5 | 6 | …第三行 |
4 | 5 | 6 | 7 | …第四行 |
第一列 | 第二列 | 第三列 | 第四列 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com