(本題滿分14分)

有三個生活小區(qū),分別位于三點處,且,. 今計劃合建一個變電站,為同時方便三個小區(qū),準備建在的垂直平分線

上的點處,建立坐標系如圖,且.

(Ⅰ)  若希望變電站到三個小區(qū)的距離和最小,

應位于何處?

(Ⅱ)  若希望點到三個小區(qū)的最遠距離為最小,

應位于何處?

                                      

(Ⅰ)  點的中點  (Ⅱ)   


解析:

:在中,,則…1分

(Ⅰ)方法一、設(),點的距離之和為

   …5分

,令,又,從而

時,;當時, .

∴當時,取得最小值

此時,即點的中點.         ……8分

方法二、設點,則的距離之和為

,求導得 ……5分

,解得

時,;當時,

∴當時,取得最小值,此時點的中點.               ……8分

(Ⅱ)設點,則,

三點的最遠距離為

①若,則;

②若,則;

   ……11分

時,上是減函數(shù),∴

時,上是增函數(shù),∴

∴當時, ,這時點上距.…14分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(本題滿分14分
A.選修4-4:極坐標與參數(shù)方程在極坐標系中,直線l 的極坐標方程為θ=
π
3
(ρ∈R ),以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,曲線C的參數(shù)方程為
x=2cosα
y=1+cos2α
(α 參數(shù)).求直線l 和曲線C的交點P的直角坐標.
B.選修4-5:不等式選講
設實數(shù)x,y,z 滿足x+y+2z=6,求x2+y2+z2 的最小值,并求此時x,y,z 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AEEBBC=2,上的點,且BF⊥平面ACE

(1)求證:AEBE;(2)求三棱錐DAEC的體積;(3)設M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江蘇省高三上學期期中考試數(shù)學 題型:解答題

(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}

(Ⅰ)若AB=[0,3],求實數(shù)m的值

(Ⅱ)若ACRB,求實數(shù)m的取值范圍

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年福建省高三上學期第三次月考理科數(shù)學卷 題型:解答題

(本題滿分14分)

已知點是⊙上的任意一點,過垂直軸于,動點滿足

(1)求動點的軌跡方程; 

(2)已知點,在動點的軌跡上是否存在兩個不重合的兩點、,使 (O是坐標原點),若存在,求出直線的方程,若不存在,請說明理由。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆江西省高一第二學期入學考試數(shù)學 題型:解答題

(本題滿分14分)已知函數(shù).

(1)求函數(shù)的定義域;

(2)判斷的奇偶性;

(3)方程是否有根?如果有根,請求出一個長度為的區(qū)間,使

;如果沒有,請說明理由?(注:區(qū)間的長度為).

 

查看答案和解析>>

同步練習冊答案