【題目】已知如圖,直線是拋物線()和圓C:的公切線,切點(在第一象限)分別為P、Q.F為拋物線的焦點,切線交拋物線的準(zhǔn)線于A,且.
(1)求切線的方程;
(2)求拋物線的方程.
【答案】(1)(2)
【解析】
(1)根據(jù)拋物線定義得,再由可得切線的斜率,再根據(jù)圓的性質(zhì)可得切點坐標(biāo),從而得到切線的方程.
(2)設(shè)切點,利用導(dǎo)數(shù)的幾何意義得出在點的切線方程再根據(jù)(1)可求得,代入拋物線,即可求得,從而求得拋物線的方程.
(1)如圖,過P作準(zhǔn)線于H.
由,知,則.
.
設(shè)切點,又,則①
又②
由①②解得,,則.
∴切線的方程為,即.
(2)由拋物線方程,求導(dǎo)數(shù)得,
設(shè)切點,則.
所以點P處切線方程為,即.
由(1)可知切線方程為,
,則
代入,得,則,
∴拋物線方程為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若無窮數(shù)列滿足:,當(dāng)',時, (其中表示,,…,中的最大項),有以下結(jié)論:
① 若數(shù)列是常數(shù)列,則;
② 若數(shù)列是公差的等差數(shù)列,則;
③ 若數(shù)列是公比為的等比數(shù)列,則:
④ 若存在正整數(shù),對任意,都有,則,是數(shù)列的最大項.
其中正確結(jié)論的序號是____(寫出所有正確結(jié)論的序號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一次數(shù)學(xué)競賽,共有6道選擇題,規(guī)定每道題答對得5分,不答得1分,答錯倒扣1分.一個由若干名學(xué)生組成的學(xué)習(xí)小組參加了這次競賽,這個小組的人數(shù)與總得分情況為( 。
A. 當(dāng)小組的總得分為偶數(shù)時,則小組人數(shù)一定為奇數(shù)
B. 當(dāng)小組的總得分為奇數(shù)時,則小組人數(shù)一定為偶數(shù)
C. 小組的總得分一定為偶數(shù),與小組人數(shù)無關(guān)
D. 小組的總得分一定為奇數(shù),與小組人數(shù)無關(guān)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在棱長為1的正方體中,E,F(xiàn)分別為線段CD和上的動點,且滿足,則四邊形所圍成的圖形(如圖所示陰影部分)分別在該正方體有公共頂點的三個面上的正投影的面積之和( 。
A. 有最小值B. 有最大值C. 為定值3D. 為定值2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若對任意恒成立,求實數(shù)的取值范圍.
(2)設(shè)函數(shù)在區(qū)間上有兩個極值點.
(i)求實數(shù)的取值范圍;
(ⅱ)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在三棱錐P–ABC中,PA⊥平面ABC,D是棱PB的中點,已知PA=BC=2,AB=4,CB⊥AB,則異面直線PC,AD所成角的余弦值為
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線,滿足,過點作拋物線的切線,切點分別為.
(1)求證:直線與拋物線相切;
(2)若點坐標(biāo)為,點在拋物線的準(zhǔn)線上,求點的坐標(biāo);
(3)設(shè)點在直線上運(yùn)動,直線是否恒過定點?若恒過定點,求出定點坐標(biāo);若不存在,請說明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某文體局為了解“跑團(tuán)”每月跑步的平均里程,收集并整理了2018年1月至2018年11月期間“跑團(tuán)”每月跑步的平均里程(單位:公里)的數(shù)據(jù),繪制了下面的折線圖.根據(jù)折線圖,下列結(jié)論正確的是( )
A. 月跑步平均里程的中位數(shù)為6月份對應(yīng)的里程數(shù)
B. 月跑步平均里程逐月增加
C. 月跑步平均里程高峰期大致在8、9月
D. 1月至5月的月跑步平均里程相對于6月至11月,波動性更小,變化比較平穩(wěn)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com