【題目】“累計凈化量(CCM)”是空氣凈化器質(zhì)量的一個重要衡量指標(biāo),它是指空氣凈化器從開始使用到凈化效率為時對顆粒物的累計凈化量(單位:克).根據(jù)國家標(biāo)準(zhǔn),對空氣凈化器的累計凈化量(CCM)有如下等級劃分:
累計凈化量(克) | 12以上 | |||
等級 |
已知某批空氣凈化器共臺,其累計凈化量都分布在區(qū)間內(nèi),為了解其質(zhì)量,隨機抽取了臺凈化器作為樣本進(jìn)行估計,按照,,,,均勻分組,其中累計凈化量在的所有數(shù)據(jù)有:,,,,和,并繪制了如下頻率分布直方圖.
(1)求的值及頻率分布直方圖中的值;
(2)以樣本估計總體,試估計這批空氣凈化器(共2000臺)中等級為的空氣凈化器有多少臺?
(3)從累計凈化量在的樣本中隨機抽取2臺,求恰好有1臺等級為的概率.
【答案】見解析
【解析】(1)因為內(nèi)的數(shù)據(jù)一共有6個,
所以由頻率分布直方圖可知,落在內(nèi)的頻率為,因此,(2分)
又,所以.(4分)
(2)由頻率分布直方圖可知,落在內(nèi)的共臺,
又在內(nèi)的共臺,所以落在內(nèi)的共臺,(6分)
故這批空氣凈化器中等級為的空氣凈化器約有臺.(8分)
(3)設(shè)“恰好有臺等級為”為事件,依題意,
內(nèi)的共有6臺,記為,其中表示等級為的臺,
則從內(nèi)的6臺中隨機抽取2臺,所有可能的結(jié)果為,,,,,,,,,,,,,,,共有15種,(10分)
而事件包含的結(jié)果為,,,,,,,,共有8種,
所以事件發(fā)生的概率為,故所求概率為.(12分)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和Sn=﹣an﹣( )n﹣1+2(n∈N*),數(shù)列{bn}滿足bn=2nan . (Ⅰ)求證數(shù)列{bn}是等差數(shù)列,并求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)cn=log2 ,數(shù)列{ }的前n項和為Tn , 求滿足Tn (n∈N*)的n的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某中學(xué)高三文科班學(xué)生共有800人參加了數(shù)學(xué)與地理的水平測試,學(xué)校決定利用隨機數(shù)表法從中抽取100人進(jìn)行成績抽樣調(diào)查,先將800人按001,002,…,800進(jìn)行編號
(1)如果從第8行第7列的數(shù)開始向右讀,請你依次寫出最先檢查的3個人的編號;(下面摘取了第7行到第9行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
(2)抽取的100人的數(shù)學(xué)與地理的水平測試成績?nèi)缦卤恚?/span>
成績分為優(yōu)秀、良好、及格三個等級;橫向,縱向分別表示地理成績與數(shù)學(xué)成績,例如:表中數(shù)學(xué)成績?yōu)榱己玫墓灿?/span>.
①若在該樣本中,數(shù)學(xué)成績優(yōu)秀率是30%,求的值:
人數(shù) | 數(shù)學(xué) | |||
優(yōu)秀 | 良好 | 及格 | ||
地理 | 優(yōu)秀 | 7 | 20 | 5 |
良好 | 9 | 18 | 6 | |
及格 | 4 |
②在地理成績及格的學(xué)生中,已知, ,求數(shù)學(xué)成績優(yōu)秀的人數(shù)比及格的人數(shù)少的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱臺形玻璃容器Ⅱ的高均為32cm,容器Ⅰ的底面對角線AC的長為10cm,容器Ⅱ的兩底面對角線,的長分別為14cm和62cm.分別在容器Ⅰ和容器Ⅱ中注入水,水深均為12cm.現(xiàn)有一根玻璃棒l,其長度為40cm.(容器厚度、玻璃棒粗細(xì)均忽略不計)
(1)將放在容器Ⅰ中,的一端置于點A處,另一端置于側(cè)棱上,求沒入水中部分的長度;
(2)將放在容器Ⅱ中,的一端置于點E處,另一端置于側(cè)棱上,求沒入水中部分的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.
(1)證明:PB∥平面AEC;
(2)設(shè)AP=1,AD= ,三棱錐P﹣ABD的體積V= ,求A到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為等腰三角形ABC內(nèi)一點,⊙O與△ABC的底邊BC交于M,N兩點,與底邊上的高AD交于點G,且與AB,AC分別相切于E,F(xiàn)兩點.
(1)證明:EF∥BC;
(2)若AG等于⊙O的半徑,且AE=MN=2 ,求四邊形EBCF的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知函數(shù),.
(1)若曲線在點處的切線與直線垂直,求的值;
(2)若存在極小值時,不等式恒成立,求實數(shù)的取值范圍;
(3)當(dāng)時,如果存在兩個不相等的正數(shù),使得,求證:.
請考生在第22、23兩題中任選一題作答.注意:只能做所選定的題目.如果多做,則按所做的第一個題目計分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2|x|﹣3a
(1)當(dāng)a=1時,在所給坐標(biāo)系中,畫出函數(shù)f(x)的圖象,并求f(x)的單調(diào)遞增區(qū)間
(2)若直線y=1與函數(shù)f(x)的圖象有4個交點,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|x2-6x+8<0},B={x|(x-a)(x-3a)<0}.
(1)若x∈A是x∈B的充分條件,求a的取值范圍;
(2)若A∩B=,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com