【題目】已知:θ為第一象限角, =(sin(θ﹣π),1), =(sin( ﹣θ),﹣ ),
(1)若 ∥ ,求 的值;
(2)若| + |=1,求sinθ+cosθ的值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大學(xué)生村官王善良落實政府“精準(zhǔn)扶貧”精神,幫助貧困戶張三用9萬元購進一部節(jié)能環(huán)保汽車,用于出租.假設(shè)第一年需運營費用2萬元,從第二年起,每年運營費用均比上一年增加2萬元,該車每年的運營收入均為11萬元.若該車使用了n(n∈N*)年后,年平均盈利額達(dá)到最大值,則n等于(注:年平盈利額=(總收入﹣總成本)× )( )
A.3
B.4
C.5
D.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,關(guān)于正方體ABCD﹣A1B1C1D1 , 下面結(jié)論錯誤的是( )
A.BD⊥平面ACC1A1
B.AC⊥BD
C.A1B∥平面CDD1C1
D.該正方體的外接球和內(nèi)接球的半徑之比為2:1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點P為線段y=2x,x∈[2,4]上任意一點,點Q為圓C:(x﹣3)2+(y+2)2=1上一動點,則線段|PQ|的最小值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2﹣1=0},A∩B=B,求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱柱ABC﹣A1B1C1的側(cè)棱與底面垂直,體積為 ,底面是邊長為 的正三角形,若P為底面A1B1C1的中心,則PA與平面A1B1C1所成角的大小為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|ax﹣x2|+2b(a,b∈R).
(1)當(dāng)a=﹣2,b=﹣ 時,解方程f(2x)=0;
(2)當(dāng)b=0時,若不等式f(x)≤2x在x∈[0,2]上恒成立,求實數(shù)a的取值范圍;
(3)若a為常數(shù),且函數(shù)f(x)在區(qū)間[0,2]上存在零點,求實數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的偶函數(shù)f(x)的圖象關(guān)于點(1,0)對稱,且當(dāng)x∈[1,2]時,f(x)=﹣2x+2,若函數(shù)y=f(x)﹣loga(|x|+1)恰好有8個零點,則實數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】綜合題
(1)已知函數(shù)f(x)=2x+ (x>0),證明函數(shù)f(x)在(0, )上單調(diào)遞減,并寫出函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)記函數(shù)g(x)=a|x|+2ax(a>1) ①若a=4,解關(guān)于x的方程g(x)=3;
②若x∈[﹣1,+∞),求函數(shù)g(x)的值域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com