【題目】為了檢測某種產品的質量(單位:千克),抽取了一個容量為N的樣本,整理得到的數(shù)據(jù)作出了頻率分布表和頻率分布直方圖如圖:

分組

頻數(shù)

頻率

[17.5,20)

10

0.05

[20,225)

50

0.25

[22.5,25)

a

b

[25,27.5)

40

c

[27.5,30]

20

0.10

合計

N

1

(Ⅰ)求出表中N及a,b,c的值;
(Ⅱ)求頻率分布直方圖中d的值;
(Ⅲ)從該產品中隨機抽取一件,試估計這件產品的質量少于25千克的概率.

【答案】解:(Ⅰ)由頻率分布表得: ,
解得N=200,a=80,b=0.4,c=0.2.
(Ⅱ)由頻率分布表得[25,27.5)頻率為0.2,
∴d= =0.08.
(Ⅲ)由頻率分布表知產品的質量不少于25千克的頻率為0.2+0.1=0.3,
∴從該產品中隨機抽取一件,
估計這件產品的質量少于25千克的概率p=1﹣0.3=0.7.
【解析】(Ⅰ)根據(jù)頻率= ,由頻率分布表能求出表中N及a,b,c的值.(Ⅱ)由頻率分布表得[25,27.5)頻率為0.2,由此能求出頻率分布圖中的d的值.(Ⅲ)由頻率分布表知產品的質量不少于25千克的頻率為0.2+0.1=0.3,從該產品中隨機抽取一件,由此能估計這件產品的質量少于25千克的概率.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=﹣ sinx cosx+1 (Ⅰ)求函數(shù)f(x)的最小正周期和單調遞增區(qū)間;
(Ⅱ)若x∈[0, ],且f(x)= ,求cosx的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:方程x2+y2﹣ax+y+1=0表示圓;命題q:方程2ax+(1﹣a)y+1=0表示斜率大于1的直線,若p∨q為真命題,p∧q為假命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,F(xiàn)1 , F2是雙曲線C: (a>0,b>0)的左、右焦點,過F1的直線l與C的左、右兩支分別交于A,B兩點.若△ABF2為等邊三角形,則雙曲線的離心率為(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點A(1, )在橢圓E: =1上,若斜率為 的直線l與橢圓E交于B,C兩點,當△ABC的面積最大時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知條件p:x2﹣3x﹣4≤0;條件q:x2﹣6x+9﹣m2≤0,若p是q的充分不必要條件,則m的取值范圍是(
A.[﹣1,1]
B.[﹣4,4]
C.(﹣∞,﹣1]∪[1,+∞)
D.(﹣∞,﹣4]∪[4,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知p:x∈R,cos2x﹣sinx+2≤m;q:函數(shù) 在[1,+∞)上單調遞減.
(I)若p∧q為真命題,求m的取值范圍;
(II)若p∨q為真命題,p∧q為假命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=90°,AB= ,BC=1,P為△ABC內一點,∠BPC=90°.

(1)若PB= ,求PA;
(2)若∠APB=150°,求tan∠PBA.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在銳角三角形ABC中,角A,B,C的對邊分別為a,b,c,且acosC,bcosB,ccosA成等差數(shù)列.
(1)求角B的大。
(2)求2sin2A+cos(A﹣C)的取值范圍.

查看答案和解析>>

同步練習冊答案