【題目】已知函數(shù).
(1)當(dāng)時,若存在,使得,求實數(shù)的取值范圍;
(2)若為正整數(shù),方程的兩個實數(shù)根滿足,求的最小值.
【答案】(1)或;(2)11.
【解析】試題分析:(1)存在,使得等價于在上有兩個不等實根,或在上有兩個不等實根,結(jié)合二次函數(shù)的頂點在直線下方或上方列不等式組求解即可;(2)利用一元二次方程方程根的分別,列不等式組,根據(jù)為正整數(shù),先初步判斷的范圍,再利用分類討論思想求解即可.
試題解析:(1)當(dāng)時,
由題意可知, 在上有兩個不等實根,或在上有兩個不等實根,則或,
解得或
即實數(shù)的取值范圍是或.
(2)設(shè),則由題意得,即 ,
所以,由于
①當(dāng)時, ,且無解,
②當(dāng)時, ,且,于是無解,
③當(dāng)時, ,且,由,得,此時有解,
綜上所述, ,當(dāng)時取等號,即的最小值為11.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列, , , 滿足,且當(dāng)時, ,令.
(Ⅰ)寫出的所有可能的值.
(Ⅱ)求的最大值.
(Ⅲ)是否存在數(shù)列,使得?若存在,求出數(shù)列;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù).
(1)當(dāng)時,求不等式的解集;
(2)若函數(shù)的值域為,且,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1, , ,過動點A作,垂足D在線段BC上且異于點B,連接AB,沿將△折起,使(如圖2所示).
(1)當(dāng)的長為多少時,三棱錐的體積最大;
(2)當(dāng)三棱錐的體積最大時,設(shè)點, 分別為棱, 的中點,試在棱上確定一點,使得 ,并求與平面所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知常數(shù),向量, ,經(jīng)過點,以為方向向量的直線與經(jīng)過點,以為方向向量的直線交于點,其中.
()求點的軌跡方程,并指出軌跡.
()若點,當(dāng)時, 為軌跡上任意一點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) , .
(1)若存在極值點1,求的值;
(2)若存在兩個不同的零點,求證: (為自然對數(shù)的底數(shù), ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】
極坐標(biāo)系的極點為直角坐標(biāo)系的原點,極軸為軸的正半軸,兩神坐標(biāo)系中的長度單位相同.已知曲線的極坐標(biāo)方程為, .
(Ⅰ)求曲線的直角坐標(biāo)方程;
(Ⅱ)在曲線上求一點,使它到直線: (為參數(shù))的距離最短,寫出點的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列是首項與公比均為的等比數(shù)列(,且),數(shù)列滿足.
(1)求數(shù)列的前項和;
(2)若對一切都有,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的長軸長為4,焦距為
(Ⅰ)求橢圓的方程;
(Ⅱ)過動點的直線交軸與點,交于點 (在第一象限),且是線段的中點.過點作軸的垂線交于另一點,延長交于點.
(ⅰ)設(shè)直線的斜率分別為,證明為定值;
(ⅱ)求直線的斜率的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com