20.若不等式組$\left\{\begin{array}{l}{x+y≤1}\\{x-y≥-1}\\{y≥0}\end{array}\right.$所表示的平面區(qū)域被直線z=x-y分成面積相等的兩部分,則z的值為( 。
A.$-\frac{1}{2}$B.$-\frac{\sqrt{2}}{2}$C.1-2$\sqrt{2}$D.1$-\sqrt{2}$

分析 作出不等式組對應的平面區(qū)域,根據(jù)平面區(qū)域面積的關(guān)系進行求解即可.

解答 解:作出不等式組對應的平面區(qū)域如圖:
則A(-1,0),B(1,0),C(0,1),則三角形ABC的面積S=$\frac{1}{2}×2×1$=1,
若不等式組所表示的平面區(qū)域被直線z=x-y分成面積相等的兩部分,
則三角形BDE的面積S=$\frac{1}{2}$,
當y=0時,x=z,則-1≤z≤1,即D(z,0),
由$\left\{\begin{array}{l}{x-y=z}\\{x+y=1}\end{array}\right.$得$\left\{\begin{array}{l}{x=\frac{1+z}{2}}\\{y=\frac{1-z}{2}}\end{array}\right.$,即E的縱坐標為y=$\frac{1-z}{2}$,
則三角形BDE的面積S=$\frac{1}{2}$=$\frac{1}{2}$(1-z)•$\frac{1-z}{2}$,
得(1-z)2=2,則1-z=±$\sqrt{2}$,
即z=1±$\sqrt{2}$,
∵-1≤z≤1,∴z=1-$\sqrt{2}$,
故選:D.

點評 本題主要考查線性規(guī)劃的應用,結(jié)合三角形的面積公式是解決本題的關(guān)鍵.考查學生的計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

10.已知數(shù)列{an}前n項和${S_n}=\frac{1}{2}{n^2}+\frac{3}{2}n-4$
(1)求數(shù)列{an}的通項公式;
(2)若${b_n}=\frac{1}{{{a_n}{a_{n+2}}}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知圓O:x2+y2=4與x軸交于A,B兩點,點M為圓O上異于A,B的任意一點,圓O在點M處的切線與圓O在點A,B處的切線分別交于C,D,直線AD和BC交于點P,設P點的軌跡為曲線E.
(1)求曲線E的方程;
(2)曲線E與y軸正半軸交點為H,則曲線E是否存在直角頂點為H的內(nèi)接等腰直角三角形Rt△GHK,若存在,求出所有滿足條件的Rt△GHK的兩條直角邊所在直線的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知A,B,C是△ABC的三個內(nèi)角,A,B,C所對的邊分別為a,b,c,設平面向量$\overrightarrow{m}$=(cosB,sinB),$\overrightarrow{n}$=(cosC,-sinC),$\overrightarrow{m}$與$\overrightarrow{n}$所成的夾角為120°.
(1)求A的值.
(2)若△ABC的面積S=$\frac{8\sqrt{3}}{3}$,sinC=2sinB,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知函數(shù)$f(x)=sin(ωx+φ)(ω>0,|φ|<\frac{π}{2})$,其圖象相鄰兩條對稱軸之間的距離為$\frac{π}{2}$,且函數(shù)$f(x+\frac{π}{12})$是偶函數(shù),則下列判斷正確的是( 。
A.函數(shù)f(x)的最小正周期為2π
B.函數(shù)f(x)在區(qū)間$[\frac{3π}{4},π]$上單調(diào)遞增
C.函數(shù)f(x)的圖象關(guān)于直線$x=-\frac{7π}{12}$對稱
D.函數(shù)f(x)的圖象關(guān)于點$(\frac{7π}{12},0)$對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知點H(-1,0),點P在y軸上,動點M滿足PH⊥PM,且直線PM與x軸交于點Q,Q是線段PM的中點.
(1)求動點M的軌跡E的方程;
(2)若點F是曲線E的焦點,過F的兩條直線l1,l2關(guān)于x軸對稱,且l1交曲線E于A、C兩點,l2交曲線E于B、D兩點,A、D在第一象限,若四邊形ABCD的面積等于$\frac{5}{2}$,求直線l1,l2的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知函數(shù)f(x)=xlnx-$\frac{a}{2}$x2在定義域內(nèi)有極值,則實數(shù)a的取值范圍是(-∞,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知向量$\overrightarrow a$,$\overrightarrow b$滿足$|\overrightarrow a|=2$,$\overrightarrow a(\overrightarrow b-\overrightarrow a)=-3$,則向量$\overrightarrow b$在$\overrightarrow a$方向上的投影為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.設n≥2,n∈N*,有序數(shù)組(a1,a2,…,an)經(jīng)m次變換后得到數(shù)組(bm,1,bm,2,…,bm,n),其中b1,i=ai+ai+1,bm,i=bm-1,i+bm-1,i+1(i=1,2,…,n),an+1=a1,bm-1,n+1=bm-1,1(m≥2).例如:有序數(shù)組(1,2,3)經(jīng)1次變換后得到數(shù)組(1+2,2+3,3+1),即(3,5,4);經(jīng)第2次變換后得到數(shù)組(8,9,7).
(1)若ai=i(i=1,2,…,n),求b3,5的值;
(2)求證:bm,i=$\sum_{j=0}^{m}$ai+jCmj,其中i=1,2,…,n.
(注:i+j=kn+t時,k∈N*,i=1,2,…,n,則ai+j=a1

查看答案和解析>>

同步練習冊答案