已知圓錐的側(cè)面展開圖是一個(gè)半徑為2的半圓,則這個(gè)圓錐的體積與全面積之比等于
 
考點(diǎn):旋轉(zhuǎn)體(圓柱、圓錐、圓臺(tái))
專題:計(jì)算題,空間位置關(guān)系與距離
分析:通過圓錐的側(cè)面展開圖,求出圓錐的底面周長(zhǎng),然后求出底面半徑,求出圓錐的高,即可求出圓錐的體積、全面積,即可得出結(jié)論.
解答: 解:圓錐的側(cè)面展開恰為一個(gè)半徑為2的半圓,所以圓錐的底面周長(zhǎng)為:2π,
底面半徑為:1,圓錐的高為:
3

圓錐的體積為:
3
3
π,圓錐的全面積為π+
1
2
π×4
=3π,
∴圓錐的體積與全面積之比等于
3
9

故答案為:
3
9
點(diǎn)評(píng):本題是基礎(chǔ)題,考查圓錐的側(cè)面展開圖,利用扇形求出底面周長(zhǎng),然后求出體積,考查計(jì)算能力,常規(guī)題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)為R上的增函數(shù),且f(log2x)>f(1),則x的取值范圍為( 。
A、(2,+∞)
B、(0,
1
2
)∪(0,+∞)
C、(
1
2
,2)
D、(0,1)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-
2
sin(2x+
π
4
)+6sinxcosx-2cos2
x+1.
(1)寫出函數(shù)f(x)的最小正周期和對(duì)稱軸方程;
(2)求f(x)在區(qū)間[0,
π
2
]
的最值以及取得最值時(shí)的相應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義運(yùn)算a⊕b=a2-ab-b2,則sin
π
8
⊕cos
π
8
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的函數(shù)f(x)滿足f(x+2)=f(x),當(dāng)x∈[-1,1]時(shí),f(x)=x2,則函數(shù)y=f(x)-|lgx|的零點(diǎn)個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a>0且a≠1,函數(shù)y=a2x+2ax+1在[-1,1]的最大值是14,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過拋物線y2=2px(p>0)的焦點(diǎn)F垂直于對(duì)稱軸的直線交拋物線于A,B兩點(diǎn),若線段AB的長(zhǎng)為8,則P的值為( 。
A、1B、2C、4D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿足
x-y≤0
x+2≥0
x+y-2≤0
,復(fù)數(shù)z=x+yi(i是虛數(shù)單位),則|z-1-2i|的最大值與最小值的乘積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

五位同學(xué)參加某作家的簽字售書活動(dòng),則甲、乙都排在丙前面的方法有( 。
A、20種B、24種
C、40種D、56種

查看答案和解析>>

同步練習(xí)冊(cè)答案