【題目】已知函數(shù)的最小正周期為,將的圖像向右平移個(gè)單位長度后得到函數(shù),的圖像關(guān)于軸對(duì)稱,且.

1)求函數(shù)的解析式;

2)設(shè)函數(shù),若函數(shù)的圖像在上恰有2個(gè)最高點(diǎn),求實(shí)數(shù)的取值范圍.

【答案】1;(2

【解析】

1)根據(jù)給出的周期,可求出ω的值;由fx)的圖象向右平移個(gè)單位長度,函數(shù)的圖象關(guān)于y軸對(duì)稱,求出φ的值;由,得A的值即可;

2)由(1)可得Fx)的解析式,由輔助角公式進(jìn)行化簡,利用函數(shù)圖象分析即可得出結(jié)果.

1)∵函數(shù)的最小正周期為π,

π,解得ω2,

gx)=fx)=Acos[2x+φ]Acos2xφ),且gx)的圖象關(guān)于y軸對(duì)稱,

φkπ,kZ,即φkπ,kZ,

∴由|φ|,可得φ,可得fx)=Acos2x),

,即f)=Acos[2×(]Acos0A2,

∴函數(shù)fx)的解析式為

2)由(1)知gx)=2cos2x;

Fx)=2cos2x+2cos2x2cos2xcossin2xsin+2cos2x3cos2xsin2x,

2cos2x);

x[0,aπ]a0);

2x[,2aπ];

∵函數(shù)Fx)的圖象在x[0aπ]a0)上恰有2個(gè)最高點(diǎn);

∴結(jié)合余弦函數(shù)的圖象(如圖示)知,4π2πa6π;

故解得a

故實(shí)數(shù)a的取值范圍為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,是它的上頂點(diǎn),點(diǎn)各不相同且均在橢圓上.

1)若恰為橢圓長軸的兩個(gè)端點(diǎn),求的面積;

2)若,求證:直線過一定點(diǎn);

3)若,的外接圓半徑為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】張軍自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營一家干果店,銷售的干果中有松子、開心果、腰果、核桃,價(jià)格依次為120/千克、80/千克、70/千克、40元千克,為增加銷量,張軍對(duì)這四種干果進(jìn)行促銷:一次購買干果的總價(jià)達(dá)到150元,顧客就少付x(2xZ).每筆訂單顧客網(wǎng)上支付成功后,張軍會(huì)得到支付款的80%.

①若顧客一次購買松子和腰果各1千克,需要支付180元,則x=________;

②在促銷活動(dòng)中,為保證張軍每筆訂單得到的金額均不低于促銷前總價(jià)的七折,則x的最大值為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖:已知某公園的四處景觀分別位于等腰梯形的四個(gè)頂點(diǎn)處,其中,兩地的距離為千米,兩地的距離為千米,.現(xiàn)擬規(guī)劃在(不包括端點(diǎn))路段上增加一個(gè)景觀,并建造觀光路直接通往處,造價(jià)為每千米萬元,又重新裝飾路段,造價(jià)為每千米萬元.

(1)若擬修建觀光路路段長為千米,求路段的造價(jià);

(2)設(shè),當(dāng)為何值時(shí),,段的總造價(jià)最低.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),是兩條不同的直線,,,是三個(gè)不同的平面,給出下列四個(gè)命題:

①若,,則,為異面直線; ②若,,,則;

③若,,則; ④若,,則.

則上述命題中真命題的序號(hào)為(

A.①②B.③④C.D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若關(guān)于x的方程僅有1個(gè)實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;

2)若是函數(shù)的極大值點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓 經(jīng)過橢圓 的左右焦點(diǎn),且與橢圓在第一象限的交點(diǎn)為,且三點(diǎn)共線,直線交橢圓, 兩點(diǎn),且).

(1)求橢圓的方程;

(2)當(dāng)三角形的面積取得最大值時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,,,為等邊三角形,且平面平面,中點(diǎn).

1)求證:平面;

2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左,右焦點(diǎn)分別為,,點(diǎn)為橢圓上任意一點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為點(diǎn),有,且當(dāng)的面積最大時(shí)為等邊三角形.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)與圓相切的直線交橢圓,兩點(diǎn),若橢圓上存在點(diǎn)滿足,求四邊形面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案