【題目】如圖所示,正方形與直角梯形所在平面互相垂直, , ,

(I)求證: 平面

(II)求證: 平面

(III)求四面體的體積.

【答案】(1)見解析(2)見解析(3)

【解析】試題分析:(1)欲證AC⊥平面BDE,只需證明AC垂直平面BDE中的兩條相交直線即可,因?yàn)锳C與BD是正方形ABCD的對角線,所以ACBD,再正DE垂直AC所在的平面,得到AC垂直DE,而BD,DE是平面BDE中的兩條相交直線,問題得證.

(2)欲證AC∥平面BEF,只需證明AC平行平面BEF中的一條直線即可,利用中位線的性質(zhì)證明OG平行DE且等于DE的一半,根據(jù)已知AF平行DE且等于DE的一半,所以O(shè)G與AF平行且相等,就可得到AC平行FG,而FG為平面BEF中的一條直線,問題得證.

(3)四面體BDEF可以看做以DEF為底面,以點(diǎn)B為頂點(diǎn)的三棱錐,底面三角形DEF的底邊DE=2,高DA=2,三棱錐的高為AB,長度等于2,再代入三棱錐的體積公式即可

)因?yàn)槠矫?/span>平面 ,

,所以平面,

因?yàn)?/span>平面,所以,

因?yàn)?/span>是正方形,所以 ,所以平面

)設(shè),取中點(diǎn),連接、,如下圖:

所以平行且等于

因?yàn)?/span>,

所以平行且等于,從而四邊形是平行四邊形,

,因?yàn)?/span>平面 平面,所以平面

平面

,

因此四面體的體積

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|﹣2≤x<5},B={x|3x﹣5≥x﹣1}.
(1)求A∩B;
(2)若集合C={x|﹣x+m>0},且A∪C=C,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)已知橢圓的離心率為,橢圓的短軸端點(diǎn)與雙曲線的焦點(diǎn)重合,過點(diǎn)且不垂直于軸的直線與橢圓相交于兩點(diǎn).

1)求橢圓的方程;

2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, 底面為菱形,平面,點(diǎn)在棱上.

(Ⅰ)求證:直線平面;

(Ⅱ)若平面,求證:;

(Ⅲ)是否存在點(diǎn),使得四面體的體積等于四面體的體積的?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)是菱形所在平面外一點(diǎn), , 是等邊三角形, , 的中點(diǎn).

(Ⅰ)求證: 平面;

(Ⅱ)求證:平面平面;

(Ⅲ)求直線與平面的所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)如圖給出的2004年至2013年我國二氧化硫年排放量(單位:萬噸)柱形圖,以下結(jié)論中不正確的是(

A.逐年比較,2008年減少二氧化硫排放量的效果最顯著
B.2007年我國治理二氧化硫排放顯現(xiàn)成效
C.2006年以來我國二氧化硫年排放量呈減少趨勢
D.2006年以來我國二氧化硫年排放量與年份正相關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體中, 為棱上一動點(diǎn), 為底面上一動點(diǎn), 的中點(diǎn),若點(diǎn)都運(yùn)動時,點(diǎn)構(gòu)成的點(diǎn)集是一個空間幾何體,則這個幾何體是

A. 棱柱 B. 棱臺 C. 棱錐 D. 球的一部分

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱錐的三組相對棱(相對的棱是指三棱錐中成異面直線的一組棱)分別相等,且長分別為,其中,則該三棱錐體積的最大值為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某運(yùn)動員每次投籃命中的概率為40%.現(xiàn)采用隨機(jī)模擬的方法估計該運(yùn)動員三次投籃恰有兩次命中的概率:先由計算器算出09之間取整數(shù)值的隨機(jī)數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示沒有命中;再以每三個隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生了20組隨機(jī)數(shù):

907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989

據(jù)此估計,該運(yùn)動員三次投籃恰有兩次命中的概率為(  )

A. 0.35 B. 0.25

C. 0,20 D. 0.15

查看答案和解析>>

同步練習(xí)冊答案