【題目】已知橢圓的焦距為2,且過點.
(1)求橢圓的標準方程;
(2)若為坐標原點,為直線上的一動點,過點作直線與橢圓相切于點,若的面積為,求直線的方程.
科目:高中數(shù)學 來源: 題型:
【題目】設直線與直線分別與橢圓交于點,且四邊形的面積為.
(1)求橢圓的方程;
(2)設過點的動直線與橢圓相交于,兩點,是否存在經(jīng)過原點,且以為直徑的圓?若有,請求出圓的方程,若沒有,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國南北朝時期的數(shù)學家祖暅提出了計算幾何體體積的祖暅原理:“冪勢既同,則積不容異“.意思是兩個同高的幾何體,如果在等高處的截面積都相等,那么這兩個幾何體的體積相等.現(xiàn)有某幾何體和一個圓錐滿足祖暅原理的條件,若該圓錐的側(cè)面展開圖是半徑為3的圓的三分之一,則該幾何體的體積為( )
A.πB.πC.4D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),在以坐標原點為極點、以軸正半軸為極軸的極坐標系中,曲線的極坐標方程為,若直線與曲線交于、兩點.
(1)求線段的中點的直角坐標;
(2)設點是曲線上任意一點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:1(a>b>0)的離心率為,點M(a,0),N(0,b),O(0,0),且△OMN的面積為1.
(1)求橢圓C的標準方程;
(2)設A,B是x軸上不同的兩點,點A(異于坐標原點)在橢圓C內(nèi),點B在橢圓C外.若過點B作斜率不為0的直線與C相交于P,Q兩點,且滿足∠PAB+∠QAB=180°.證明:點A,B的橫坐標之積為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a,b,c分別為內(nèi)角A,B,C的對邊,若同時滿足以下四個條件中的三個:①,②,③,④.
(1)條件①②能否同時滿足,請說明理由;
(2)以上四個條件,請在滿足三角形有解的所有組合中任選一組,并求出對應的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設是2020項的實數(shù)數(shù)列,中的每一項都不為零,中任意連續(xù)11項的乘積是定值.
①存在滿足條件的數(shù)列,使得其中恰有365個1;
②不存在滿足條件的數(shù)列,使得其中恰有550個1.
命題的真假情況為( )
A.①和②都是真命題B.①是真命題,②是假命題
C.②是真命題,①是假命題D.①和②都是假命題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓的離心率為,左焦點到直線的距離為10,圓.
(1)求橢圓的方程;
(2)若是橢圓上任意一點,為圓的任一直徑,求的取值范圍;
(3)是否存在以橢圓上點為圓心的圓,使得過圓上任意一點作圓的切線,切點為,都滿足?若存在,求出圓的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“勾股定理”在西方被稱為“畢達哥拉斯定理”,國時期吳國的數(shù)學家趙爽創(chuàng)制了一幅“勾股圓方圖”,用數(shù)形結(jié)合的方法給出了勾股定理的詳細證明如圖所示的“勾股圓方圖”中,四個相同的直角三角形與中間的小正方形拼成一個大正方形若直角三角形中較小的銳角,現(xiàn)在向該大止方形區(qū)域內(nèi)隨機地投擲一枚飛鏢,則飛鏢落在陰影部分的概率是
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com