(本小題滿分14分)已知等差數(shù)列的前項(xiàng)和為,前項(xiàng)和為.
1)求數(shù)列的通項(xiàng)公式
2)設(shè), 求數(shù)列的前項(xiàng)和.

(1);(2)Sn。

解析試題分析:(1)設(shè){an}的公差為d ,由已知得

解得a1=3,d=-1
故an=3-(n-1)(-1)=4-n…………………………………………6分
(2)由(1)的解答得,bn=n·qn-1,于是
Sn=1·q0+2·q1+3·q2+……+(n-1)·qn-1+n·qn.
若q≠1,將上式兩邊同乘以q,得
qSn=1·q1+2·q2+3·q3+……+(n-1)·qn+n·qn+1.
將上面兩式相減得到
(q-1)Sn=nqn-(1+q+q2+……+qn-1)
=nqn
于是Sn
若q=1,則Sn=1+2+3+……+n=
所以,Sn……………………………………14分
考點(diǎn):等差數(shù)列的性質(zhì);等差數(shù)列的通項(xiàng)公式;數(shù)列前n項(xiàng)和的求法。
點(diǎn)評(píng):(1)若一個(gè)數(shù)列是等差數(shù)列和等比數(shù)列的乘積的形式,求其前n項(xiàng)和通常用錯(cuò)位相減法。(2)注意等比數(shù)列前n項(xiàng)和的形式: ,注意對(duì)的討論。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知是等差數(shù)列,且
(1)求數(shù)列的通項(xiàng)公式及前項(xiàng)的和
(2)令,求的前項(xiàng)的和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分16分)
已知數(shù)列,其中是首項(xiàng)為1,公差為1的等差數(shù)列;是公差為的等差數(shù)列;是公差為的等差數(shù)列().
(Ⅰ)若= 30,求;
(Ⅱ)試寫(xiě)出a30關(guān)于的關(guān)系式,并求a30的取值范圍;
(Ⅲ)續(xù)寫(xiě)已知數(shù)列,可以使得是公差為3的等差數(shù)列,請(qǐng)你依次類推,把已知數(shù)列推廣為無(wú)窮數(shù)列,試寫(xiě)出關(guān)于的關(guān)系式(N);
(Ⅳ)在(Ⅲ)條件下,且,試用表示此數(shù)列的前100項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分10分)
記等差數(shù)列{}的前n項(xiàng)和為,已知,
(Ⅰ)求數(shù)列{}的通項(xiàng)公式;
(Ⅱ)令,求數(shù)列{}的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
等差數(shù)列的前項(xiàng)和為,且.
(1)數(shù)列滿足:求數(shù)列的通項(xiàng)公式;
(2)設(shè)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)
成等差數(shù)列的三個(gè)正數(shù)的和等于15,并且這三個(gè)數(shù)分別加上2、5、13后成為等比數(shù)列中的、、
(1)求數(shù)列的通項(xiàng)公式; (2)數(shù)列的前n項(xiàng)和為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分15分)
若S是公差不為0的等差數(shù)列的前n項(xiàng)和,且成等比數(shù)列。
(1)求等比數(shù)列的公比;
(2)若,求的通項(xiàng)公式;
(3)在(2)的條件下,設(shè),是數(shù)列的前n項(xiàng)和,求使得對(duì)所有都成立的最小正整數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

把正奇數(shù)數(shù)列中的數(shù)按上小下大、左小右大的原則排成如下三角形數(shù)表:
1
3   5
7    9   11
………………………
……………………………
設(shè)是位于這個(gè)三角形數(shù)表中從上往下數(shù)第行、從左往右數(shù)第個(gè)數(shù).
(1)若,求的值;
(2)若記三角形數(shù)表中從上往下數(shù)第行各數(shù)的和為,求證.(本題滿分14分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知數(shù)列的前n項(xiàng)和為,且
(1)試求的通項(xiàng)公式;
(2)若,試求數(shù)列的前項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案