已知a,b,c表示△ABC的邊長(zhǎng),m>0.求證:
a
a+m
+
b
b+m
c
c+m
考點(diǎn):不等式的證明
專(zhuān)題:證明題,不等式的解法及應(yīng)用
分析:設(shè)f(x)=
x
x+m
x>0),則f′(x)=
m
(x+m)2
>0,可得fx)在(0,+∞)上為增函數(shù),利用△ABC中,a+bc,即可得出結(jié)論.
解答: 證明:設(shè)f(x)=
x
x+m
x>0),則f′(x)=
m
(x+m)2
>0
fx)在(0,+∞)上為增函數(shù).
在△ABC中,a+bc,則
a+b
a+b+m
c
c+m

c
c+m
a
a+b+m
+
b
a+b+m
a
a+m
+
b
b+m

∴原不等式成立.
點(diǎn)評(píng):本題考查不等式的證明,考查函數(shù)的單調(diào)性,確定f(x)在(0,+∞)上為增函數(shù)是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解關(guān)于x的不等式:x3-2x2-5x+6<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用分析法證明:
6
+
7
3
+
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解方程:2|x-1|=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用數(shù)軸標(biāo)根法解關(guān)于x的不等式:(1-2x)(x-1)(x+2)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax2-(2a+1)x+2.
(Ⅰ)若f(x)>-x-1恒成立,求a的取值范圍;
(Ⅱ)當(dāng)a>0時(shí),解不等式:f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為
x=
3
cosα
y=sinα
(α為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρsin(θ+
π
4
)=4
2

(1)求曲線C1的普通方程與曲線C2的直角坐標(biāo)方程;
(2)設(shè)P為曲線C1上的動(dòng)點(diǎn),求點(diǎn)P到C2上點(diǎn)的距離的最小值,并求此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2
3
sinxcosx+2cos2x-1,(x∈R).
(1)求函數(shù)f(x)的最小正周期.
(2)求函數(shù)f(x)在區(qū)間[0,
π
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=3sin(x-10°)+5sin(x-70°)的最大值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案