(本題滿(mǎn)分16分)
已知圓:,直線(xiàn)的方程為,點(diǎn)是直線(xiàn)上一動(dòng)點(diǎn),過(guò)點(diǎn)作圓的切線(xiàn)、,切點(diǎn)為、.
(1)當(dāng)的橫坐標(biāo)為時(shí),求∠的大。
(2)求證:經(jīng)過(guò)A、P、M三點(diǎn)的圓必過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo);
(3)求證:直線(xiàn)必過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo);
(4)求線(xiàn)段長(zhǎng)度的最小值.
解:(Ⅰ)由題可知,圓M的半徑r=2,,
因?yàn)镻A是圓M的一條切線(xiàn),所以∠MAP=90°
又因MP==2r,
又∠MPA=30°,∠APB=60°;
。á颍┰O(shè)P(2b,b),因?yàn)椤螹AP=90°,所以經(jīng)過(guò)A、P、M三點(diǎn)的圓以MP為直徑,其方程為:
即
由,
解得或,所以圓過(guò)定點(diǎn)
(Ⅲ)因圓方程為即
……①
圓:即 ……②
②-①得圓方程與圓相交弦所在直線(xiàn)方程為
…11分
點(diǎn)M到直線(xiàn)的距離
相交弦長(zhǎng)即
當(dāng)時(shí),AB有最小值
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
a1+2a2+3a3+…+nan |
1+2+3+…+n |
n(n+1)(2n+1) |
6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿(mǎn)分16分)本題共有2個(gè)小題,第1小題滿(mǎn)分8分,第2小題滿(mǎn)分8分.
已知函數(shù)(,、是常數(shù),且),對(duì)定義域內(nèi)任意(、且),恒有成立.
(1)求函數(shù)的解析式,并寫(xiě)出函數(shù)的定義域;
(2)求的取值范圍,使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿(mǎn)分16分)已知數(shù)列的前項(xiàng)和為,且.?dāng)?shù)列中,,
.(1)求數(shù)列的通項(xiàng)公式;(2)若存在常數(shù)使數(shù)列是等比數(shù)列,求數(shù)列的通項(xiàng)公式;(3)求證:①;②.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:江蘇省私立無(wú)錫光華學(xué)校2009—2010學(xué)年高二第二學(xué)期期末考試 題型:解答題
本題滿(mǎn)分16分)已知圓內(nèi)接四邊形ABCD的邊長(zhǎng)分別為AB = 2,BC = 6,CD = DA = 4;求四邊形ABCD的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學(xué)卷(文) 題型:解答題
(本題滿(mǎn)分16分;第(1)小題5分,第(2)小題5分,第三小題6分)
已知函數(shù)
(1)判斷并證明在上的單調(diào)性;
(2)若存在,使,則稱(chēng)為函數(shù)的不動(dòng)點(diǎn),現(xiàn)已知該函數(shù)有且僅有一個(gè)不動(dòng)點(diǎn),求的值;
(3)若在上恒成立 , 求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com