11.已知函數(shù)y=f(x)(x∈R)滿足f(-x)=-f(x),其導(dǎo)函數(shù)為y=f′(x),當(dāng)x>0時(shí),xf′(x)<f(x),若$a=2f(\frac{1}{2}),b=-\frac{1}{2}f(-2),c=-\frac{1}{ln2}f(ln\frac{1}{2})$,則a,b,c的大小關(guān)系為( 。
A.a<b<cB.b<c<aC.b<a<cD.c<a<b

分析 構(gòu)造函數(shù)g(x)=$\frac{f(x)}{x}$,g′(x)=$\frac{xf′(x)-f(x)}{{x}^{2}}$,函數(shù)g(x)單調(diào)遞減,再根據(jù)函數(shù)的奇偶性得到g(x)為偶函數(shù),即可判斷.

解答 解:構(gòu)造函數(shù)g(x)=$\frac{f(x)}{x}$,
∴g′(x)=$\frac{xf′(x)-f(x)}{{x}^{2}}$,
∵xf′(x)-f(x)<0,
∴g′(x)<0,
∴函數(shù)g(x)在(-∞,0)和(0,+∞)單調(diào)遞減.
∵函數(shù)f(x)為奇函數(shù),
∴g(x)=$\frac{f(x)}{x}$是偶函數(shù),
$a=2f(\frac{1}{2}),b=-\frac{1}{2}f(-2),c=-\frac{1}{ln2}f(ln\frac{1}{2})$,
即a=g($\frac{1}{2}$),b=g(-2)=g(2),c=g(ln$\frac{1}{2}$)=g(ln2),
∵2>ln2>$\frac{1}{2}$,
∴g($\frac{1}{2}$)>g(ln$\frac{1}{2}$)>g(2),
∴a>c>b,
故選:B.

點(diǎn)評(píng) 本題考查了通過構(gòu)造函數(shù)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性比較大小,考查了推理能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.將十進(jìn)制數(shù)89轉(zhuǎn)化為二進(jìn)制數(shù)為(  )
A.1111110B.1010101C.1001111D.1011001

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.經(jīng)過圓C:(x+1)2+(y-2)2=4的圓心且傾斜角為45°的直線方程為( 。
A.x-y+3=0B.x-y-3=0C.x+y-1=0D.x+y+3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)函數(shù)f(x)=(x-a)(x-b)(x-c),(a、b、c是兩兩不等的常數(shù)),則f′(b)=(b-a)(b-c).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,已知半圓O的半徑為1,點(diǎn)C在直徑AB的延長線上,且BC=1,P是半圓上動(dòng)點(diǎn),以PC為一邊作等腰直角三角形PCK(K為直角頂點(diǎn),且K和O在PC的兩側(cè)).
(1)求四邊形OPKC面積的最大值;
(2)設(shè)t=$\frac{△POC的面積}{△PCK的面積}$,求t的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)由不等式$\left\{{\begin{array}{l}{x+y-1≥0}\\{x-y+1≥0}\\{2x-y-2≤0}\end{array}}\right.$表示的平面區(qū)域?yàn)锳,若直線kx-y+1=0(k∈R)平分A的面積,則實(shí)數(shù)k的值為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$-\frac{1}{2}$D.$-\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.運(yùn)行如圖所示程序框圖,則輸出的S為( 。
A.10B.9C.8D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖為由三棱柱切割而得到的幾何體的三視圖,則該幾何體的體積為(  )
A.$\sqrt{3}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{4\sqrt{3}}{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,以坐標(biāo)原點(diǎn)O為圓心的單位圓與x軸正半軸相交于點(diǎn)A,點(diǎn)B,P在單位圓上,且B(-$\frac{{\sqrt{5}}}{5}$,$\frac{{2\sqrt{5}}}{5}$),∠AOB=α.
(1)求$\frac{4cosα-3sinα}{5cosα+3sinα}$的值;
(2)若四邊形OAQP是平行四邊形,
(i)當(dāng)P在單位圓上運(yùn)動(dòng)時(shí),求點(diǎn)O的軌跡方程;
(ii)設(shè)∠POA=θ(0≤θ≤2π),點(diǎn)Q(m,n),且f(θ)=m+$\sqrt{3}$n.求關(guān)于θ的函數(shù)f(θ)的解析式,并求其單調(diào)增區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案